|
This article is cited in 4 scientific papers (total in 4 papers)
Fundamental solution of a singular Bessel differential operator with a negative parameter
L. N. Lyakhovabc, Yu. N. Bulatovb, S. A. Roshchupkinb, E. L. Saninaa a Voronezh State University, 1 University Squ., Voronezh, 394018 Russia
b Bunin Yelets State University, 28.1 Kommunarov str., Yelets, 399770 Russia
c Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shansky, 42 Lenina str., Lipetsk, 398020 Russia
Abstract:
The singular differential Bessel operator $B_{-\gamma}$ with negative parameter $-\gamma<0$ is considered. Solutions of the singular differential Bessel equation $B_{-\gamma} u+\lambda^2u=0$ are represented by linearly independent functions $\mathbb{J}_\mu$ and $\mathbb{J}_{-\mu},~{\mu}=\dfrac{\gamma+1}{2}$. Studied some properties of the functions $\mathbb{J}_\mu$, which are expressed in terms of the properties of the Bessel–Levitan j-function. Direct and inverse Bessel $\mathbb J_\mu$-transforms are introduced. Based on the $\mathbb T$-pseudo-shift operator introduced earlier, a a generalized $\mathbb T$-shift operator belonging to the Levitan class of generalized shifts, commuting with the Bessel operator $B_{-\gamma}$. A fundamental solution is found for the singular differential operator $B_{-\gamma}$ with a singularity at an arbitrary point on the semiaxis $[0,\infty).$
Keywords:
spherical symmetry, singular Bessel differential operator, Bessel transforms, generalized Levitan shift, fundamental solution.
Received: 01.06.2022 Revised: 26.12.2022 Accepted: 29.05.2023
Citation:
L. N. Lyakhov, Yu. N. Bulatov, S. A. Roshchupkin, E. L. Sanina, “Fundamental solution of a singular Bessel differential operator with a negative parameter”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7, 52–65; Russian Math. (Iz. VUZ), 67:7 (2023), 43–54
Linking options:
https://www.mathnet.ru/eng/ivm9898 https://www.mathnet.ru/eng/ivm/y2023/i7/p52
|
| Statistics & downloads: |
| Abstract page: | 217 | | Full-text PDF : | 96 | | References: | 52 | | First page: | 5 |
|