Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2023, Number 7, Pages 52–65
DOI: https://doi.org/10.26907/0021-3446-2023-7-52-65
(Mi ivm9898)
 

This article is cited in 4 scientific papers (total in 4 papers)

Fundamental solution of a singular Bessel differential operator with a negative parameter

L. N. Lyakhovabc, Yu. N. Bulatovb, S. A. Roshchupkinb, E. L. Saninaa

a Voronezh State University, 1 University Squ., Voronezh, 394018 Russia
b Bunin Yelets State University, 28.1 Kommunarov str., Yelets, 399770 Russia
c Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shansky, 42 Lenina str., Lipetsk, 398020 Russia
Full-text PDF (438 kB) Citations (4)
References:
Abstract: The singular differential Bessel operator $B_{-\gamma}$ with negative parameter $-\gamma<0$ is considered. Solutions of the singular differential Bessel equation $B_{-\gamma} u+\lambda^2u=0$ are represented by linearly independent functions $\mathbb{J}_\mu$ and $\mathbb{J}_{-\mu},~{\mu}=\dfrac{\gamma+1}{2}$. Studied some properties of the functions $\mathbb{J}_\mu$, which are expressed in terms of the properties of the Bessel–Levitan j-function. Direct and inverse Bessel $\mathbb J_\mu$-transforms are introduced. Based on the $\mathbb T$-pseudo-shift operator introduced earlier, a a generalized $\mathbb T$-shift operator belonging to the Levitan class of generalized shifts, commuting with the Bessel operator $B_{-\gamma}$. A fundamental solution is found for the singular differential operator $B_{-\gamma}$ with a singularity at an arbitrary point on the semiaxis $[0,\infty).$
Keywords: spherical symmetry, singular Bessel differential operator, Bessel transforms, generalized Levitan shift, fundamental solution.
Received: 01.06.2022
Revised: 26.12.2022
Accepted: 29.05.2023
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, Volume 67, Issue 7, Pages 43–54
DOI: https://doi.org/10.3103/S1066369X2307006X
Document Type: Article
UDC: 517.9
Language: Russian
Citation: L. N. Lyakhov, Yu. N. Bulatov, S. A. Roshchupkin, E. L. Sanina, “Fundamental solution of a singular Bessel differential operator with a negative parameter”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7, 52–65; Russian Math. (Iz. VUZ), 67:7 (2023), 43–54
Citation in format AMSBIB
\Bibitem{LyaBulRos23}
\by L.~N.~Lyakhov, Yu.~N.~Bulatov, S.~A.~Roshchupkin, E.~L.~Sanina
\paper Fundamental solution of a singular Bessel differential operator with a negative parameter
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2023
\issue 7
\pages 52--65
\mathnet{http://mi.mathnet.ru/ivm9898}
\crossref{https://doi.org/10.26907/0021-3446-2023-7-52-65}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2023
\vol 67
\issue 7
\pages 43--54
\crossref{https://doi.org/10.3103/S1066369X2307006X}
Linking options:
  • https://www.mathnet.ru/eng/ivm9898
  • https://www.mathnet.ru/eng/ivm/y2023/i7/p52
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :96
    References:52
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025