|
Математическая физика, анализ, геометрия, 2002, том 9, номер 2, страницы 146–167
(Mi jmag279)
|
|
|
|
Эта публикация цитируется в 6 научных статьях (всего в 6 статьях)
The representation of a meromorphic function as the quotient of entire functions and Paley problem in ${\mathbb C}^n$: survey of some results
B. N. Khabibullin Department of Mathematics, Bashkir State University, 32 Frunze Str., Ufa, Bashkortostan, 450074, Russia
Аннотация:
The classical representation problem for a meromorphic function $f$ in $\mathbb C^n$, $n\ge 1$, consists in representing $f$ as the quotient $f=g/h$ of two entire functions $g$ and $h$, each with logarithm of modulus majorized by a function as close as possible to the Nevanlinna characteristic. Here we introduce generalizations of the Nevanlinna characteristic and give a short survey of classical and recent results on the representation of a meromorphic function in terms such characteristics. When $f$ has a finite lower order, the Paley problem on best possible estimates of the growth of entire functions $g$ and $h$ in the representations $f=g/h$ will be considered. Also we point out to some unsolved problems in this area.
Поступила в редакцию: 06.09.2001
Образец цитирования:
B. N. Khabibullin, “The representation of a meromorphic function as the quotient of entire functions and Paley problem in ${\mathbb C}^n$: survey of some results”, Матем. физ., анал., геом., 9:2 (2002), 146–167
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jmag279 https://www.mathnet.ru/rus/jmag/v9/i2/p146
|
Статистика просмотров: |
Страница аннотации: | 209 | PDF полного текста: | 129 |
|