|
Журнал Сибирского федерального университета. Серия «Математика и физика», 2008, том 1, выпуск 2, страницы 105–124
(Mi jsfu12)
|
|
|
|
Эта публикация цитируется в 5 научных статьях (всего в 5 статьях)
Multi-Logarithmic Differential Forms on Complete Intersections
Alexandr G. Aleksandrova, Avgust K. Tsikhb a Institute of Control Sciences, Russian Academy of Sciences
b Institute of Mathematics, Siberian Federal University
Аннотация:
We construct a complex $\Omega_S^\bullet(\log C)$ of sheaves of multi-logarithmic differential forms on a complex analytic manifold $S$ with respect to a reduced complete intersection $C\subset S$, and define the residue map as a natural morphism from this complex onto the Barlet complex $\omega_C^\bullet$ of regular meromorphic differential forms on $C$. It follows then that sections of the Barlet complex can be regarded as a generalization of the residue differential forms defined by Leray. Moreover, we show that the residue map can be described explicitly in terms of certain integration current.
Ключевые слова:
complete intersection, multi-logarithmic differential forms, regular meromorphic differential forms, Poincaré residue, logarithmic residue, Grothendieck duality, residue current.
Получена: 02.02.2008 Исправленный вариант: 10.04.2008 Принята: 12.04.2008
Образец цитирования:
Alexandr G. Aleksandrov, Avgust K. Tsikh, “Multi-Logarithmic Differential Forms on Complete Intersections”, Журн. СФУ. Сер. Матем. и физ., 1:2 (2008), 105–124
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/jsfu12 https://www.mathnet.ru/rus/jsfu/v1/i2/p105
|
Статистика просмотров: |
Страница аннотации: | 565 | PDF полного текста: | 158 | Список литературы: | 71 |
|