|
|
Lobachevskii Journal of Mathematics, 2003, том 13, страницы 51–55
(Mi ljm98)
|
|
|
|
A note on semi-pseudoorders in semigroups
N. Kehayopulu, M. Tsingelis National and Capodistrian University of Athens, Department of Mathematics
Аннотация:
An important problem for studying the structure of an ordered semigroup $S$ is to know conditions under which for a given congruence $\rho$ on $S$ the set $S/\rho$ is an ordered semigroup. In [1] we introduced the concept of pseudoorder in ordered semigroups and we proved that each pseudoorder on an ordered semigroup $S$ induces a congruence $\sigma$ on $S$ such that $S/\rho$ is an ordered semigroup. In [3] we introduced the concept of semi-pseudoorder (also called pseudocongruence) in semigroups and we proved that each semi-pseudoorder on a semigroup $S$ induces a congruence $\sigma$ on $S$ such that $S/\rho$ is an ordered semigroup. In this note we prove that the converse of the last statement also holds. That is each congruence $\sigma$ on a semigroup $(S,.)$ such that $S/\rho$ is an ordered semigroup induces a semi-pseudoorder on $S$.
Ключевые слова:
Pseudoorder, pseudocongruence, semi-pseudoorder.
Образец цитирования:
N. Kehayopulu, M. Tsingelis, “A note on semi-pseudoorders in semigroups”, Lobachevskii J. Math., 13 (2003), 51–55
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ljm98 https://www.mathnet.ru/rus/ljm/v13/p51
|
| Статистика просмотров: |
| Страница аннотации: | 255 | | PDF полного текста: | 108 | | Список литературы: | 61 |
|