Modelirovanie i Analiz Informatsionnykh Sistem
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Model. Anal. Inform. Sist.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Modelirovanie i Analiz Informatsionnykh Sistem, 2023, Volume 30, Number 3, Pages 246–257
DOI: https://doi.org/10.18255/1818-1015-2023-3-246-257
(Mi mais802)
 

Discrete mathematics in relation to computer science

On a geometric approach to the estimation of interpolation projectors

M. V. Nevskii, A. Yu. Ukhalov

P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl 150003, Russia
References:
Abstract: Suppose $\Omega$ is a closed bounded subset of ${\mathbb R}^n,$ $S$ is an $n$-dimensional non-degenerate simplex, $\xi(\Omega;S):=$ min {$\sigma\geqslant 1: \Omega\subset \sigma S$}. Here $\sigma S$ is the result of homothety of $S$ with respect to the center of gravity with coefficient $\sigma$. Let $d\geqslant n+1,$ $\varphi_1(x),\ldots,\varphi_d(x)$ be linearly independent monomials in $n$ variables, and $\varphi_1(x)\equiv 1,$ $\varphi_2(x)=x_1,\ \ldots, \varphi_{n+1}(x)=x_n.$ Put $\Pi:=$lin$(\varphi_1,\ldots,\varphi_d).$ The interpolation projector $P: C(\Omega)\to \Pi$ with a set of nodes $x^{(1)},\ldots, x^{(d)} \in \Omega$ is defined by equalities $Pf\left(x^{(j)}\right)=f\left(x^{(j)}\right).$ Denote by $\|P\|_{\Omega}$ the norm of $P$ as an operator from $C(\Omega)$ to $C(\Omega)$ . Consider the mapping $T:{\mathbb R}^n\to {\mathbb R}^{d-1}$ of the form $T(x):=(\varphi_2(x),\ldots,\varphi_d(x)). $ We have $ \frac{1}{2}\left(1+\frac{1}{d-1}\right)\left(\|P\|_{\Omega}-1\right)+1 \leqslant \xi(T(\Omega);S)\leqslant \frac{d}{2}\left(\|P\|_{\Omega}-1\right)+1, $ where $S$ is a $(d-1)$-dimensional simplex with vertices $T\left(x^{(j)}\right).$ We discuss this and other relations for polynomial interpolation of functions continuous on a segment. Some results of numerical analysis are presented.
Keywords: polynomial interpolation, projector, norm, absorption coefficient, esimation.
Received: 04.07.2023
Revised: 11.08.2023
Accepted: 16.08.2023
Document Type: Article
UDC: 514.17, 517.51, 519.6
MSC: 41A05, 52B55, 52C07
Language: Russian
Citation: M. V. Nevskii, A. Yu. Ukhalov, “On a geometric approach to the estimation of interpolation projectors”, Model. Anal. Inform. Sist., 30:3 (2023), 246–257
Citation in format AMSBIB
\Bibitem{NevUkh23}
\by M.~V.~Nevskii, A.~Yu.~Ukhalov
\paper On a geometric approach to the estimation of interpolation projectors
\jour Model. Anal. Inform. Sist.
\yr 2023
\vol 30
\issue 3
\pages 246--257
\mathnet{http://mi.mathnet.ru/mais802}
\crossref{https://doi.org/10.18255/1818-1015-2023-3-246-257}
Linking options:
  • https://www.mathnet.ru/eng/mais802
  • https://www.mathnet.ru/eng/mais/v30/i3/p246
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Моделирование и анализ информационных систем
    Statistics & downloads:
    Abstract page:36
    Full-text PDF :15
    References:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024