|
Moscow Journal of Combinatorics and Number Theory, 2014, том 4, выпуск 1, страницы 78–117
(Mi mjcnt2)
|
|
|
|
A strengthening of a theorem of Bourgain–Kontorovich II
D. A. Frolenkova, I. D. Kanb a Division of Algebra and Number Theory,
Steklov Mathematical Institute,
Gubkina str., 8, Moscow, Russia 119991
b Department of Number Theory,
Moscow State University,
Moscow, Russia
Аннотация:
Zaremba’s conjecture (1971) states that every positive integer number $d$ can be represented as a denominator (continuant) of a finite continued fraction
$\frac bd= [d_1, d_2 ,\dots , d_k]$, with
all partial quotients $d_1, d_2 ,\dots , d_k$ being bounded by an absolute constant $A$. Recently (in 2011)
several new theorems concerning this conjecture were proved by Bourgain and Kontorovich. The
easiest of them states that the set of numbers satisfying Zaremba’s conjecture with $A = 50$ has
positive proportion in $\mathbb{N}$. In 2013 we proved this result with $A = 7$. In this paper the same theorem
is proved with $A = 5$.
Поступила в редакцию: 03.06.2013 Исправленный вариант: 28.12.2013
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mjcnt2
|
Статистика просмотров: |
Страница аннотации: | 108 |
|