Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Matem. Mod.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1996, Volume 8, Number 8, Pages 69–75 (Mi mm1610)  

Computational methods and algorithms

Spectral algorithms of multidimensional polynomial approximation

F. B. Abutaliev, I. I. Ismagilov

Cybernetics Institute, Academy of Sciences of the RUz
Abstract: The algorithms of multidimensional polynomial approximation on the base of spectral representations of multidimensional sequences are suggested. They use Walsh-like miltidimensional discrete orthogonal transformations. Undoubted merit of these algorithms is low multiplicational complexity.
Received: 22.07.1994
Bibliographic databases:
UDC: 681.381
Language: Russian
Citation: F. B. Abutaliev, I. I. Ismagilov, “Spectral algorithms of multidimensional polynomial approximation”, Matem. Mod., 8:8 (1996), 69–75
Citation in format AMSBIB
\Bibitem{AbuIsm96}
\by F.~B.~Abutaliev, I.~I.~Ismagilov
\paper Spectral algorithms of multidimensional polynomial approximation
\jour Matem. Mod.
\yr 1996
\vol 8
\issue 8
\pages 69--75
\mathnet{http://mi.mathnet.ru/mm1610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1427432}
\zmath{https://zbmath.org/?q=an:0981.65503}
Linking options:
  • https://www.mathnet.ru/eng/mm1610
  • https://www.mathnet.ru/eng/mm/v8/i8/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:550
    Full-text PDF :290
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024