Moscow Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mosc. Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Moscow Mathematical Journal, 2023, Volume 23, Number 4, Pages 545–558 (Mi mmj866)  

Fibered toric varieties

Askold Khovanskiiab, Leonid Moninc

a Department of Mathematics, University of Toronto, Toronto, Canada
b Moscow Independent University, Moscow, Russia
c Institute of Mathematics, EPFL, Lausanne, Switzerland
References:
Abstract: A toric variety is called fibered if it can be represented as a total space of fibre bundle over toric base and with toric fiber. Fibered toric varieties form a special case of toric variety bundles. In this note we first give an introduction to the class of fibered toric varieties. Then we use them to illustrate some known and conjectural results on topology and intersection theory of general toric variety bundles. Finally, using the language of fibered toric varieties, we compute the equivariant cohomology rings of smooth complete toric varieties.
Key words and phrases: toric varieties, toric variety bundles, Newton polyhedra.
Document Type: Article
MSC: Primary 14M25, 52B20; Secondary 14C17, 14N10
Language: English
Citation: Askold Khovanskii, Leonid Monin, “Fibered toric varieties”, Mosc. Math. J., 23:4 (2023), 545–558
Citation in format AMSBIB
\Bibitem{KhoMon23}
\by Askold~Khovanskii, Leonid~Monin
\paper Fibered toric varieties
\jour Mosc. Math.~J.
\yr 2023
\vol 23
\issue 4
\pages 545--558
\mathnet{http://mi.mathnet.ru/mmj866}
Linking options:
  • https://www.mathnet.ru/eng/mmj866
  • https://www.mathnet.ru/eng/mmj/v23/i4/p545
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Moscow Mathematical Journal
    Statistics & downloads:
    Abstract page:84
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025