Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2012, Volume 15, Number 1, Pages 55–73 (Mi mt226)  

Semigroups of polygons whose vertices define a centered partition of $\mathbb R^n$

V. M. Gicheva, I. A. Zubarevaa, E. A. Mescheryakovb

a Sobolev Institute of Mathematics, Omsk Division, Omsk, Russia
b Omsk State University, Omsk, Russia
References:
Abstract: A partition $\mathfrak F$ of a Euclidean space into finite subsets has subgroup property $\mathsf{SP}$ if the family of the convex hulls of the leaves of $\mathfrak F$ constitutes a subgroup with respect to the Minkowski addition. If $\mathfrak F$ consists of orbits of a finite linear groups then $\mathsf{SP}$ is equivalent to the fact that the group is a Coxeter group. In this article, this assertion is proved only under the assumption of continuity and centrality of $\mathfrak F$ (this means that every leaf is inscribed in some sphere centered at zero). An example is given of a noncentered partition satisfying $\mathsf{SP}$ (such partitions cannot be Coxeter partitions).
Key words: semigroups of polygon, Coxeter groups.
Received: 26.04.2011
English version:
Siberian Advances in Mathematics, 2013, Volume 23, Issue 1, Pages 20–31
DOI: https://doi.org/10.3103/S1055134413010021
Bibliographic databases:
Document Type: Article
UDC: 514.1
Language: Russian
Citation: V. M. Gichev, I. A. Zubareva, E. A. Mescheryakov, “Semigroups of polygons whose vertices define a centered partition of $\mathbb R^n$”, Mat. Tr., 15:1 (2012), 55–73; Siberian Adv. Math., 23:1 (2013), 20–31
Citation in format AMSBIB
\Bibitem{GicZubMes12}
\by V.~M.~Gichev, I.~A.~Zubareva, E.~A.~Mescheryakov
\paper Semigroups of polygons whose vertices define a~centered partition of~$\mathbb R^n$
\jour Mat. Tr.
\yr 2012
\vol 15
\issue 1
\pages 55--73
\mathnet{http://mi.mathnet.ru/mt226}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2984675}
\elib{https://elibrary.ru/item.asp?id=17718097}
\transl
\jour Siberian Adv. Math.
\yr 2013
\vol 23
\issue 1
\pages 20--31
\crossref{https://doi.org/10.3103/S1055134413010021}
Linking options:
  • https://www.mathnet.ru/eng/mt226
  • https://www.mathnet.ru/eng/mt/v15/i1/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :102
    References:39
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024