Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2019, Volume 22, Number 2, Pages 175–209
DOI: https://doi.org/10.33048/mattrudy.2019.22.210
(Mi mt354)
 

This article is cited in 1 scientific paper (total in 1 paper)

Local existence of contact discontinuities in relativistic magnetohydrodynamics

Yu. L. Trakhininab

a Sobolev Institute of Mathematics, Novosibirsk, 630090 Russia
b Novosibirsk State University, Novosibirsk, 630090 Russia
Full-text PDF (357 kB) Citations (1)
References:
Abstract: We study the free boundary problem for a contact discontinuity for the system of relativistic magnetohydrodynamics. A surface of contact discontinuity is a characteristic of this system with no flow across the discontinuity for which the pressure, the velocity and the magnetic field are continuous whereas the density, the entropy and the temperature may have a jump. For the two-dimensional case, we prove the local-in-time existence in Sobolev spaces of a unique solution of the free boundary problem provided that the Rayleigh–Taylor sign condition on the jump of the normal derivative of the pressure is satisfied at each point of the initial discontinuity.
Key words: relativistic magnetohydrodynamics, free boundary problem, contact discontinuity, local-in-time existence and uniqueness theorem.
Received: 26.10.2018
Revised: 26.10.2018
Accepted: 27.02.2019
English version:
Siberian Advances in Mathematics, 2020, Volume 30, Issue 2, Pages 55–76
DOI: https://doi.org/10.3103/S1055134420010058
Bibliographic databases:
Document Type: Article
UDC: 517.956.35
Language: Russian
Citation: Yu. L. Trakhinin, “Local existence of contact discontinuities in relativistic magnetohydrodynamics”, Mat. Tr., 22:2 (2019), 175–209; Siberian Adv. Math., 30:2 (2020), 55–76
Citation in format AMSBIB
\Bibitem{Tra19}
\by Yu.~L.~Trakhinin
\paper Local existence of contact discontinuities in relativistic magnetohydrodynamics
\jour Mat. Tr.
\yr 2019
\vol 22
\issue 2
\pages 175--209
\mathnet{http://mi.mathnet.ru/mt354}
\crossref{https://doi.org/10.33048/mattrudy.2019.22.210}
\transl
\jour Siberian Adv. Math.
\yr 2020
\vol 30
\issue 2
\pages 55--76
\crossref{https://doi.org/10.3103/S1055134420010058}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85081966029}
Linking options:
  • https://www.mathnet.ru/eng/mt354
  • https://www.mathnet.ru/eng/mt/v22/i2/p175
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:363
    Full-text PDF :164
    References:45
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024