Matematicheskie Trudy
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Tr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Trudy, 2022, Volume 25, Number 2, Pages 31–87
DOI: https://doi.org/10.33048/mattrudy.2022.25.202
(Mi mt668)
 

Maximal ideal spaces of invariant function algebras on compact groups

V. M. Gichev

Sobolev Institute of Mathematics, Omsk Division, Omsk, 644099 Russia
References:
Abstract: Let $G$ be a compact group and $A$ be a closed subalgebra of $C(G)$ which is invariant under the left and right shifts in $G$. We consider maximal ideal spaces (spectra) $\mathcal{M}_A$ of these algebras. They can be defined as closed sub-bialgebras of $C(G)$. There is a natural semigroup structure in $\mathcal{M}_A$ that admits an involutive anti-automorphism and a polar decomposition. If $\mathcal{M}_A\ne G$ then $\mathcal{M}_A$ has a nontrivial analytic structure. If $G$ is a Lie group then every idempotent in $\mathcal{M}_A$ is the identity element of a complex Lie semigroup embedded to $\mathcal{M}_A$. The semigroup $\mathcal{M}_A$ admits an analogue of Cartan's decomposition $KAK$, namely, $\mathcal{M}_A=G\widehat{T}G$, where $\widehat{T}$ is an abelian semigroup that is a hull of the maximal torus $T$.
Key words: invariant function algebra, maximal ideal space, complex Lie semigroup.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0003
Received: 03.10.2022
Revised: 20.10.2022
Accepted: 02.11.2022
English version:
Siberian Advances in Mathematics, 2023, Volume 33, Issue 2, Pages 107–139
DOI: https://doi.org/10.1134/S1055134423020025
Document Type: Article
UDC: 517.98
Language: Russian
Citation: V. M. Gichev, “Maximal ideal spaces of invariant function algebras on compact groups”, Mat. Tr., 25:2 (2022), 31–87; Siberian Adv. Math., 33:2 (2023), 107–139
Citation in format AMSBIB
\Bibitem{Gic22}
\by V.~M.~Gichev
\paper Maximal ideal spaces of invariant function algebras on compact groups
\jour Mat. Tr.
\yr 2022
\vol 25
\issue 2
\pages 31--87
\mathnet{http://mi.mathnet.ru/mt668}
\crossref{https://doi.org/10.33048/mattrudy.2022.25.202}
\transl
\jour Siberian Adv. Math.
\yr 2023
\vol 33
\issue 2
\pages 107--139
\crossref{https://doi.org/10.1134/S1055134423020025}
Linking options:
  • https://www.mathnet.ru/eng/mt668
  • https://www.mathnet.ru/eng/mt/v25/i2/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические труды Siberian Advances in Mathematics
    Statistics & downloads:
    Abstract page:65
    Full-text PDF :29
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024