Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2014, Volume 5, Issue 2, Pages 37–46
DOI: https://doi.org/10.4213/mvk115
(Mi mvk115)
 

This article is cited in 6 scientific papers (total in 6 papers)

A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors

M. A. Goltvanitsa

LLC "Certification Research Center", Moscow
References:
Abstract: Let $p$ be a prime number, $R=\mathrm{GF}(q)$ be a field of $q=p^r$ elements and $S=\mathrm{GF}(q^n)$ be an extension of $R$. Let $\breve S$ be the ring of all linear transformations of the space $_RS$. A linear recurrent sequence $v$ of order $m$ over the module $_{\breve S}S$ is said to be a skew linear recurrence sequence (skew LRS) of order $m$ over $S$. The period $T(v)$ of such sequence satisfies the inequality $T(v)\leq\tau=q^{mn}-1$. If $T(v)=\tau$ we call $v$skew LRS of maximal period (skew MP LRS). Here new classes of skew MP LRS based on the notion of the defining tuples of factors are constructed.
Key words: finite field, skew linear recurrence of maximal period.
Received 25.IX.2013
Document Type: Article
UDC: 519.624+519.113.6
Language: English
Citation: M. A. Goltvanitsa, “A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors”, Mat. Vopr. Kriptogr., 5:2 (2014), 37–46
Citation in format AMSBIB
\Bibitem{Gol14}
\by M.~A.~Goltvanitsa
\paper A construction of skew LRS of maximal period over finite fields based on the defining tuples of factors
\jour Mat. Vopr. Kriptogr.
\yr 2014
\vol 5
\issue 2
\pages 37--46
\mathnet{http://mi.mathnet.ru/mvk115}
\crossref{https://doi.org/10.4213/mvk115}
Linking options:
  • https://www.mathnet.ru/eng/mvk115
  • https://doi.org/10.4213/mvk115
  • https://www.mathnet.ru/eng/mvk/v5/i2/p37
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :191
    References:58
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024