Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2014, Volume 5, Issue 2, Pages 57–70
DOI: https://doi.org/10.4213/mvk117
(Mi mvk117)
 

This article is cited in 5 scientific papers (total in 5 papers)

Description of maximal skew linear recurrences in terms of multipliers

S. N. Zaitsev

LLC "Certification Research Center", Moscow
Full-text PDF (315 kB) Citations (5)
References:
Abstract: Let $P=\mathrm{GF}(q)$ be a field, $F=\mathrm{GF}(q^n)$ be an extension of $P$. We construct a wide class of skew MP-polynomials over $F$ by the description of multipliers of skew MP LRS. For $P$-skew MP LRS $v$ over $F$ we call linear transformation $\psi$ (generalized) multiplier if there exists a number $l\geq0$ such that $\psi(v(i))=v(i+l)$, $i\geq0$. Denote by $\mathfrak M(v)^*$ the set of all multipliers of a skew MP LRS $v$, and $\mathfrak M(v)=\mathfrak M(v)^*\cup\{0\}$. It is proved that $\mathfrak M(v)$ is a field and $\mathfrak M(v)\cong F$ if and only if $v$ is linearized. Sufficient conditions for $\mathfrak M(v)\cong P$ are given. It is proved that for any $P$-skew MP LRS $v$ there exists a transformation $\psi$ such that the sequence $\psi(v)$ is $\mathfrak M(v)$-skew MP LRS of the same order, and for any field $K<F$ there exists MP LRS $v$ such that $\mathfrak M(v)\cong K$.
Key words: skew linear recurrence, skew polynomial of maximal period, generalized multiplier, maximal non-reducible sequence.
Received 25.IX.2013
Document Type: Article
UDC: 519.624+519.113.6
Language: English
Citation: S. N. Zaitsev, “Description of maximal skew linear recurrences in terms of multipliers”, Mat. Vopr. Kriptogr., 5:2 (2014), 57–70
Citation in format AMSBIB
\Bibitem{Zai14}
\by S.~N.~Zaitsev
\paper Description of maximal skew linear recurrences in terms of multipliers
\jour Mat. Vopr. Kriptogr.
\yr 2014
\vol 5
\issue 2
\pages 57--70
\mathnet{http://mi.mathnet.ru/mvk117}
\crossref{https://doi.org/10.4213/mvk117}
Linking options:
  • https://www.mathnet.ru/eng/mvk117
  • https://doi.org/10.4213/mvk117
  • https://www.mathnet.ru/eng/mvk/v5/i2/p57
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :184
    References:57
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024