Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2014, Volume 5, Issue 2, Pages 99–102
DOI: https://doi.org/10.4213/mvk121
(Mi mvk121)
 

This article is cited in 1 scientific paper (total in 1 paper)

Constructions of elliptic curves endomorphisms

A. Yu. Nesterenko

National Research University Higher School of Economics, Moscow
References:
Abstract: Let $\mathbb K$ be an imaginary quadratic field. Consider an elliptic curve $E(\mathbb F_p)$ defined over prime field $\mathbb F_p$ with given ring of endomorphisms $o_\mathbb K$, where $o_\mathbb K$ is an order in a ring of integers $\mathbb Z_\mathbb K$.
An algorithm permitting to construct endomorphism of the curve $E(\mathbb F_p)$ corresponding to the complex number $\tau\in o_\mathbb K$ is presented. The endomorphism is represented as a pair of rational functions with coefficients in $\mathbb F_p$. To construct these functions we use continued fraction expansion for values of Weierstrass function. After that we reduce the rational functions modulo prime ideal in finite extension of $\mathbb K$. One can use such endomorphism for elliptic curve point exponentiation.
Key words: elliptic curve, continued fraction expansion, reduction modulo prime ideal, point exponentiation.
Received 25.IX.2013
Document Type: Article
UDC: 519.772+512.624
Language: English
Citation: A. Yu. Nesterenko, “Constructions of elliptic curves endomorphisms”, Mat. Vopr. Kriptogr., 5:2 (2014), 99–102
Citation in format AMSBIB
\Bibitem{Nes14}
\by A.~Yu.~Nesterenko
\paper Constructions of elliptic curves endomorphisms
\jour Mat. Vopr. Kriptogr.
\yr 2014
\vol 5
\issue 2
\pages 99--102
\mathnet{http://mi.mathnet.ru/mvk121}
\crossref{https://doi.org/10.4213/mvk121}
Linking options:
  • https://www.mathnet.ru/eng/mvk121
  • https://doi.org/10.4213/mvk121
  • https://www.mathnet.ru/eng/mvk/v5/i2/p99
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :218
    References:47
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024