Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Vopr. Kriptogr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography], 2024, Volume 15, Issue 2, Pages 29–46
DOI: https://doi.org/10.4213/mvk468
(Mi mvk468)
 

Circulant matrices over $\mathbb{F}_2$ and their use for the construction of efficient linear transformations with high branch numbers

S. A. Davydova, Yu. D. Shkuratovb

a JSRPC «Kryptonite», Moscow
b Lomonosov Moscow State University, Moscow
References:
Abstract: Linear transformations over $\mathbb{F}_2$ with high branch number are studied. New class of transformations is proposed — transformations, corresponding to the multiplication in the ring $\mathbb{F}_2[x]/f(x)$. An important subclass of this class is studied in detail — transformations defined by circulant matrices over $\mathbb{F}_2$. It is shown that for the software implementation of this class of transformations it is sufficient to use two instructions from the (extended) set of processor instructions and store only one row of the matrix. It is proposed to decompose any matrix over $\mathbb{F}_2$ into the sum of products of diagonal matrices and matrices corresponding to the multiplication in the ring $\mathbb{F}_2[x]/f(x)$. The number of summands is estimated in the case of known $f(x)$, the efficiency of the software implementation is justified. In the case of unknown $f(x)$ some probabilistic relations between matrix rows are derived. For any circulant matrix over $\mathbb{F}_{2^{s}}$ and $f(x) = x^{n}+1$ the number of summands does not exceed $s$ in the general case and does not exceed $k$ in the case when each element of the matrix has only $k$ nonzero low-order digits. AES and Whirlpool matrices have been decomposed using this method into two and four summands.
Key words: linear transformation, branch number, MDS matrix, circulant matrix, matrix decomposition, software implementation of linear transformation.
Received 02.IX.2023
Document Type: Article
UDC: 519.719.2
Language: Russian
Citation: S. A. Davydov, Yu. D. Shkuratov, “Circulant matrices over $\mathbb{F}_2$ and their use for the construction of efficient linear transformations with high branch numbers”, Mat. Vopr. Kriptogr., 15:2 (2024), 29–46
Citation in format AMSBIB
\Bibitem{DavShk24}
\by S.~A.~Davydov, Yu.~D.~Shkuratov
\paper Circulant matrices over $\mathbb{F}_2$ and their use for the construction of~efficient linear transformations with high branch numbers
\jour Mat. Vopr. Kriptogr.
\yr 2024
\vol 15
\issue 2
\pages 29--46
\mathnet{http://mi.mathnet.ru/mvk468}
\crossref{https://doi.org/10.4213/mvk468}
Linking options:
  • https://www.mathnet.ru/eng/mvk468
  • https://doi.org/10.4213/mvk468
  • https://www.mathnet.ru/eng/mvk/v15/i2/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические вопросы криптографии
    Statistics & downloads:
    Abstract page:46
    Full-text PDF :2
    References:5
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024