Abstract:
Suppose that $b_n\downarrow0$ and $\sum_{n=1}^{\infty}({b_n}/{n})=+\infty$. In this paper, it is proved that any measurable almost everywhere finite function on $[0,1]$ can be corrected on a set of arbitrarily small measure to a continuous function $\widetilde{f}$ so that the nonzero moduli $|A_n(\widetilde{f}\mspace{4mu})|$ of the Fourier–Faber–Schauder coefficients of the corrected function are $b_n$.
Citation:
M. G. Grigoryan, V. G. Krotov, “Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System”, Mat. Zametki, 93:2 (2013), 172–178; Math. Notes, 93:2 (2013), 217–223
\Bibitem{GriKro13}
\by M.~G.~Grigoryan, V.~G.~Krotov
\paper Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber--Schauder System
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 2
\pages 172--178
\mathnet{http://mi.mathnet.ru/mzm10158}
\crossref{https://doi.org/10.4213/mzm10158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205957}
\zmath{https://zbmath.org/?q=an:1263.42006}
\elib{https://elibrary.ru/item.asp?id=20731672}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 2
\pages 217--223
\crossref{https://doi.org/10.1134/S0001434613010239}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900023}
\elib{https://elibrary.ru/item.asp?id=20431901}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874560307}
Linking options:
https://www.mathnet.ru/eng/mzm10158
https://doi.org/10.4213/mzm10158
https://www.mathnet.ru/eng/mzm/v93/i2/p172
This publication is cited in the following 11 articles:
Avetisyan Zh., Grigoryan M., Ruzhansky M., “Approximations in l-1 With Convergent Fourier Series”, Math. Z., 299:3-4 (2021), 1907–1927
Grigoryan G.M., Krotov V.G., “Quasiunconditional Basis Property of the Faber-Schauder System”, Ukr. Math. J., 71:2 (2019), 237–247
Martin G. Grigoryan, Tigran M. Grigoryan, L. S. Simonyan, Springer Proceedings in Mathematics & Statistics, 275, Analysis and Partial Differential Equations: Perspectives from Developing Countries, 2019, 109
Nikolaj Mormul`, Alexander Shchitov, “A study of approximation of functions of bounded variation by Faber-Schauder partial sums”, EEJET, 4:4 (100) (2019), 14
M. G. Grigoryan, A. Kh. Kobelyan, “On behavior of Fourier coefficients and uniform convergence of Fourier series in the Haar system”, Adv. Oper. Theory, 3:4 (2018), 781–793
M. G. Grigoryan, A. A. Sargsyan, “The Fourier–Faber–Schauder series unconditionally divergent in measure”, Siberian Math. J., 59:5 (2018), 835–842
M. G. Grigoryan, “On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$”, J. Math. Sci. (N. Y.), 243:6 (2019), 844–858
Tigran Grigoryan, Martin Grigoryan, N. Mastorakis, V. Mladenov, A. Bulucea, “On the representation of signals series by Faber-Schauder system”, MATEC Web Conf., 125 (2017), 05005
L. N. Galoyan, R. G. Melikbekyan, “Behavior of the Fourier–Walsh coefficients of a corrected function”, Siberian Math. J., 57:3 (2016), 505–512
M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. Math., 80:6 (2016), 1057–1083
Grigoryan M.G., Navasardyan K.A., “On behavior of Fourier coefficients by Walsh system”, J. Contemp. Math. Anal.-Armen. Aca., 51:1 (2016), 21–33