Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 93, Issue 2, Pages 172–178
DOI: https://doi.org/10.4213/mzm10158
(Mi mzm10158)
 

This article is cited in 11 scientific papers (total in 11 papers)

Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System

M. G. Grigoryana, V. G. Krotovb

a Yerevan State University
b Belarusian State University, Minsk
References:
Abstract: Suppose that $b_n\downarrow0$ and $\sum_{n=1}^{\infty}({b_n}/{n})=+\infty$. In this paper, it is proved that any measurable almost everywhere finite function on $[0,1]$ can be corrected on a set of arbitrarily small measure to a continuous function $\widetilde{f}$ so that the nonzero moduli $|A_n(\widetilde{f}\mspace{4mu})|$ of the Fourier–Faber–Schauder coefficients of the corrected function are $b_n$.
Keywords: Luzin's correction theorem, Faber–Schauder system, correcting function, Faber–Schauder spectrum.
Received: 02.12.2011
English version:
Mathematical Notes, 2013, Volume 93, Issue 2, Pages 217–223
DOI: https://doi.org/10.1134/S0001434613010239
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: M. G. Grigoryan, V. G. Krotov, “Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber–Schauder System”, Mat. Zametki, 93:2 (2013), 172–178; Math. Notes, 93:2 (2013), 217–223
Citation in format AMSBIB
\Bibitem{GriKro13}
\by M.~G.~Grigoryan, V.~G.~Krotov
\paper Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber--Schauder System
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 2
\pages 172--178
\mathnet{http://mi.mathnet.ru/mzm10158}
\crossref{https://doi.org/10.4213/mzm10158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3205957}
\zmath{https://zbmath.org/?q=an:1263.42006}
\elib{https://elibrary.ru/item.asp?id=20731672}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 2
\pages 217--223
\crossref{https://doi.org/10.1134/S0001434613010239}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315582900023}
\elib{https://elibrary.ru/item.asp?id=20431901}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874560307}
Linking options:
  • https://www.mathnet.ru/eng/mzm10158
  • https://doi.org/10.4213/mzm10158
  • https://www.mathnet.ru/eng/mzm/v93/i2/p172
  • This publication is cited in the following 11 articles:
    1. Avetisyan Zh., Grigoryan M., Ruzhansky M., “Approximations in l-1 With Convergent Fourier Series”, Math. Z., 299:3-4 (2021), 1907–1927  crossref  mathscinet  isi
    2. Grigoryan G.M., Krotov V.G., “Quasiunconditional Basis Property of the Faber-Schauder System”, Ukr. Math. J., 71:2 (2019), 237–247  crossref  mathscinet  isi  scopus
    3. Martin G. Grigoryan, Tigran M. Grigoryan, L. S. Simonyan, Springer Proceedings in Mathematics & Statistics, 275, Analysis and Partial Differential Equations: Perspectives from Developing Countries, 2019, 109  crossref
    4. Nikolaj Mormul`, Alexander Shchitov, “A study of approximation of functions of bounded variation by Faber-Schauder partial sums”, EEJET, 4:4 (100) (2019), 14  crossref
    5. M. G. Grigoryan, A. Kh. Kobelyan, “On behavior of Fourier coefficients and uniform convergence of Fourier series in the Haar system”, Adv. Oper. Theory, 3:4 (2018), 781–793  crossref  mathscinet  zmath  isi  scopus
    6. M. G. Grigoryan, A. A. Sargsyan, “The Fourier–Faber–Schauder series unconditionally divergent in measure”, Siberian Math. J., 59:5 (2018), 835–842  mathnet  crossref  crossref  isi  elib
    7. M. G. Grigoryan, “On the absolute convergence of Fourier–Haar series in the metric of $L^p(0,1)$, $0<p<1$”, J. Math. Sci. (N. Y.), 243:6 (2019), 844–858  mathnet  crossref
    8. Tigran Grigoryan, Martin Grigoryan, N. Mastorakis, V. Mladenov, A. Bulucea, “On the representation of signals series by Faber-Schauder system”, MATEC Web Conf., 125 (2017), 05005  crossref
    9. L. N. Galoyan, R. G. Melikbekyan, “Behavior of the Fourier–Walsh coefficients of a corrected function”, Siberian Math. J., 57:3 (2016), 505–512  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    10. M. G. Grigoryan, K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. Math., 80:6 (2016), 1057–1083  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Grigoryan M.G., Navasardyan K.A., “On behavior of Fourier coefficients by Walsh system”, J. Contemp. Math. Anal.-Armen. Aca., 51:1 (2016), 21–33  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:803
    Full-text PDF :244
    References:101
    First page:21
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025