Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 4, Pages 578–581
DOI: https://doi.org/10.4213/mzm10327
(Mi mzm10327)
 

This article is cited in 5 scientific papers (total in 5 papers)

On the Interpolation of Analytic Mappings

A. M. Savchuk, A. A. Shkalikov

M. V. Lomonosov Moscow State University
Full-text PDF (420 kB) Citations (5)
References:
Abstract: Let $(E_0,E_1)$ and $(H_0,H_1)$ be two pairs of complex Banach spaces densely and continuously embedded into each other, $E_1\hookrightarrow E_0$ and $H_1\hookrightarrow H_0$ and also let $\|x\|_{E_0} \le \|x\|_{E_1}$. By $E_\theta=[E_0,E_1]_\theta$ and $H_\theta=[H_0,H_1]_\theta$ we denote the spaces obtained by the complex interpolation method for $\theta\in[0,1]$, and by $B_\theta (0,R)$ we denote an open ball of radius $R$ in the space $E_\theta$. Let $\Phi\colon B_0(0,R)\to H_0$ be an analytic mapping taking $B_1(0,R)$ into $H_1$, and let the estimates
$$ \|\Phi(x)\|_{H_\theta} \le C_\theta\|x\|_{H_\theta}\qquad \text{for all}\quad x\in B_\theta(0,R) $$
hold for $\theta = 0,\,1$. Then, for all $\theta\in (0,1)$, the mapping $\Phi$ takes the ball $B_\theta(0,r)$ of radius $r\in(0,R)$ in the space $E_\theta$ into $H_\theta$ and
$$ \|\Phi(x)\|_{H_\theta}\le C_0^{1-\theta}C_1^\theta \frac{R}{R-r}\|x\|_{E_\theta}, \qquad x\in B_\theta(0,r). $$
Keywords: complex interpolation method, Banach space, homogenous analytic mapping, Lipschitz continuity.
Received: 19.06.2013
English version:
Mathematical Notes, 2013, Volume 94, Issue 4, Pages 547–550
DOI: https://doi.org/10.1134/S0001434613090241
Bibliographic databases:
Document Type: Article
UDC: 517.988.52+517.982.27
Language: Russian
Citation: A. M. Savchuk, A. A. Shkalikov, “On the Interpolation of Analytic Mappings”, Mat. Zametki, 94:4 (2013), 578–581; Math. Notes, 94:4 (2013), 547–550
Citation in format AMSBIB
\Bibitem{SavShk13}
\by A.~M.~Savchuk, A.~A.~Shkalikov
\paper On the Interpolation of Analytic Mappings
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 4
\pages 578--581
\mathnet{http://mi.mathnet.ru/mzm10327}
\crossref{https://doi.org/10.4213/mzm10327}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3423285}
\zmath{https://zbmath.org/?q=an:1291.46020}
\elib{https://elibrary.ru/item.asp?id=20731802}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 4
\pages 547--550
\crossref{https://doi.org/10.1134/S0001434613090241}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326052400024}
\elib{https://elibrary.ru/item.asp?id=21885248}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886463986}
Linking options:
  • https://www.mathnet.ru/eng/mzm10327
  • https://doi.org/10.4213/mzm10327
  • https://www.mathnet.ru/eng/mzm/v94/i4/p578
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:666
    Full-text PDF :204
    References:101
    First page:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025