|
Математические заметки, 2016, том 99, выпуск 5, статья опубликована в англоязычной версии журнала
(Mi mzm11227)
|
|
|
|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Статьи, опубликованные в английской версии журнала
Existence of the Stationary Solution of a Rayleigh-Type Equation
D.I. Borisovabc, R. Gaydukovd a Akhmulla Bashkir State Pedagogical University, Ufa, Russia
b University of Hradec Králové, Hradec Králové, Czech Republic
c Institute of Mathematics with Computer Center, Ufa Scientific Center,
Russian Academy of Sciences, Ufa, Russia
d National Research University Higher School of Economics, Moscow, Russia
Аннотация:
A fluid flow along a semi-infinite plate with small periodic irregularities on the surface is considered for large Reynolds numbers. The boundary layer has a double-deck structure: a thin boundary layer (“lower deck”) and a classical Prandtl boundary layer (“upper deck”). The aim of this paper is to prove the existence and uniqueness of the stationary solution of a Rayleigh-type equation, which describes oscillations of the vertical velocity component in the classical boundary layer.
Ключевые слова:
double-deck structure, boundary-layer theory, fluid mechanics,
Navier–Stokes equations, Rayleigh-type equation, eigenvalue problem.
Поступило: 23.03.2016
Образец цитирования:
D.I. Borisov, R. Gaydukov, “Existence of the Stationary Solution of a Rayleigh-Type Equation”, Math. Notes, 99:5 (2016), 636–642
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/mzm11227
|
Статистика просмотров: |
Страница аннотации: | 258 |
|