Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2021, Volume 110, Issue 2, Pages 289–296
DOI: https://doi.org/10.4213/mzm13069
(Mi mzm13069)
 

This article is cited in 2 scientific papers (total in 2 papers)

Lower Bounds for the Square-to-Linear Ratio for Plane Peano Curves

E. V. Shchepina, E. Yu. Mychkab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University
Full-text PDF (421 kB) Citations (2)
References:
Abstract: It is proved that, for any map of the unit interval onto the unit square, there exist two points in the interval such that the squared Euclidean distance between their images exceeds the distance between them on the interval at least by a factor of $3.625$. The additional condition that the images of the interval endpoints belong to opposite sides of the square increases this factor to more than $4$.
Keywords: Peano curves, square-to-linear ratio.
Received: 10.03.2021
English version:
Mathematical Notes, 2021, Volume 110, Issue 2, Pages 267–272
DOI: https://doi.org/10.1134/S0001434621070282
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: E. V. Shchepin, E. Yu. Mychka, “Lower Bounds for the Square-to-Linear Ratio for Plane Peano Curves”, Mat. Zametki, 110:2 (2021), 289–296; Math. Notes, 110:2 (2021), 267–272
Citation in format AMSBIB
\Bibitem{ShcMyc21}
\by E.~V.~Shchepin, E.~Yu.~Mychka
\paper Lower Bounds for the Square-to-Linear Ratio for Plane Peano Curves
\jour Mat. Zametki
\yr 2021
\vol 110
\issue 2
\pages 289--296
\mathnet{http://mi.mathnet.ru/mzm13069}
\crossref{https://doi.org/10.4213/mzm13069}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4295012}
\elib{https://elibrary.ru/item.asp?id=47045093}
\transl
\jour Math. Notes
\yr 2021
\vol 110
\issue 2
\pages 267--272
\crossref{https://doi.org/10.1134/S0001434621070282}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000687705200028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113718573}
Linking options:
  • https://www.mathnet.ru/eng/mzm13069
  • https://doi.org/10.4213/mzm13069
  • https://www.mathnet.ru/eng/mzm/v110/i2/p289
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:279
    Full-text PDF :83
    References:38
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025