Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 5, Pages 739–752
DOI: https://doi.org/10.4213/mzm13942
(Mi mzm13942)
 

Modular Generalization of the Bourgain–Kontorovich Theorem

I. D. Kan

Moscow Aviation Institute (National Research University)
References:
Abstract: The set $\mathfrak{D}^N_\mathbf{A}$ of all irreducible denominators $\le N$ of positive rationals $<1$ whose continued fraction expansions consist of elements of the set $\mathbf{A}=\{1,2,4\}$ is considered. We prove that, for any prime $Q\le N^{2/3}$, the set $\mathfrak{D}^N_{\mathbf{A}}$ contains almost all possible remainders on division by $Q$ and the remainder term in the corresponding asymptotic formula decays according to a power law.
Keywords: continued fraction, trigonometric sum, Zaremba's conjecture, Hausdorff dimension.
Received: 05.03.2023
Revised: 18.03.2023
English version:
Mathematical Notes, 2023, Volume 114, Issue 5, Pages 785–796
DOI: https://doi.org/10.1134/S0001434623110147
Bibliographic databases:
Document Type: Article
UDC: 511.36+511.336
PACS: 511.36 + 511.336
MSC: 511.36 + 511.336
Language: Russian
Citation: I. D. Kan, “Modular Generalization of the Bourgain–Kontorovich Theorem”, Mat. Zametki, 114:5 (2023), 739–752; Math. Notes, 114:5 (2023), 785–796
Citation in format AMSBIB
\Bibitem{Kan23}
\by I.~D.~Kan
\paper Modular Generalization of the Bourgain--Kontorovich Theorem
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 5
\pages 739--752
\mathnet{http://mi.mathnet.ru/mzm13942}
\crossref{https://doi.org/10.4213/mzm13942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4716482}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 5
\pages 785--796
\crossref{https://doi.org/10.1134/S0001434623110147}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85187704711}
Linking options:
  • https://www.mathnet.ru/eng/mzm13942
  • https://doi.org/10.4213/mzm13942
  • https://www.mathnet.ru/eng/mzm/v114/i5/p739
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :32
    Russian version HTML:59
    References:32
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025