Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 6, Pages 969–981
DOI: https://doi.org/10.4213/mzm14457
(Mi mzm14457)
 

Spectral series of the Schrödinger operator with delta potential at the poles of two- and three-dimensional surfaces of revolution

V. V. Rykhlovab, A. I. Shafarevichabc

a Lomonosov Moscow State University
b Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: This article is devoted to the construction of spectral series of the Schrödinger operator with double delta potential of the form H=(h2/2)Δ+δx1(x)+δx2(x), xM, where xj are the poles of 2- or 3-surface of revolution M, in the semiclassical limit as h0. The operator is considered to be an arbitrary self-adjoint extension of the Laplace–Beltrami operator.
Keywords: Schrödinger operator, semiclassical approximation, delta-potential, spectral problems.
Funding agency Grant number
Russian Science Foundation 22-11-00272
This work was financially supported by the Russian Science Foundation, project 22-11-00272, https://rscf.ru/en/project/22-11-00272/.
Received: 19.07.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 6, Pages 1350–1360
DOI: https://doi.org/10.1134/S0001434624110415
Bibliographic databases:
Document Type: Article
UDC: 514.763.85
Language: Russian
Citation: V. V. Rykhlov, A. I. Shafarevich, “Spectral series of the Schrödinger operator with delta potential at the poles of two- and three-dimensional surfaces of revolution”, Mat. Zametki, 116:6 (2024), 969–981; Math. Notes, 116:6 (2024), 1350–1360
Citation in format AMSBIB
\Bibitem{RykSha24}
\by V.~V.~Rykhlov, A.~I.~Shafarevich
\paper Spectral series of the Schr\"odinger operator with delta potential at the poles of two- and three-dimensional surfaces of revolution
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 6
\pages 969--981
\mathnet{http://mi.mathnet.ru/mzm14457}
\crossref{https://doi.org/10.4213/mzm14457}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4692508}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 6
\pages 1350--1360
\crossref{https://doi.org/10.1134/S0001434624110415}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85218188163}
Linking options:
  • https://www.mathnet.ru/eng/mzm14457
  • https://doi.org/10.4213/mzm14457
  • https://www.mathnet.ru/eng/mzm/v116/i6/p969
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :2
    Russian version HTML:4
    References:25
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025