Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 6, Pages 923–940
DOI: https://doi.org/10.4213/mzm14508
(Mi mzm14508)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic expansions of solutions to $n \times n$ systems of ordinary differential equations with a large parameter

A. P. Kosarevab, A. A. Shkalikovab

a Lomonosov Moscow State University
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: The $n \times n$ system of ordinary differential equations
$$ y' - \sum_{l=0}^{m}\lambda^{-l}B_l(x)y - \lambda^{-m}C(x, \lambda)y=\lambda A(x)y, \qquad x \in [0, 1], \quad m \in \mathbb{N}, $$
is considered, where
$$ A=\operatorname{diag}\{a_1, \dots, a_n\}, \qquad B_l=\{b_{jk}^l\}, \qquad C=\{c_{jk}(\cdot, \lambda)\}, \qquad y=(y_1, \dots, y_n)^\top. $$
It is assumed that, for some integer $m\ge 1$, the entries of the matrices $A(x)$ and $B_l(x)$ are complex-valued functions satisfying the conditions
\begin{gather*} a_i \in W_1^m[0, 1], \quad b^{0}_{ii} \in W_1^{m-1}[0, 1], \quad b^{0}_{jk} \in W_1^{m}[0, 1], \qquad j \ne k, \quad i, j, k=1, \dots, n, \\ b_{jk}^{l} \in W_1^{m-l}[0, 1], \qquad j, k=1, \dots, n, \quad l=1, \dots, m, \end{gather*}
where the $W^k_1$ are the Sobolev spaces, and the entries of the matrix $C(\cdot, \lambda)$ are integrable functions on the interval $[0, 1]$ such that $\|c_{ij}(\cdot, \lambda)\|_{1} \to 0$ in the metric of the space $L_1[0, 1]$ uniformly as $\lambda \to \infty$, $\lambda \in \mathbb{C}$.
The main results of the paper refine and supplement classical results of Birkhoff–Tamarkin–Langer theory concerning asymptotic expansions of the fundamental solutions of the system under consideration in sectors of the complex plane. Special attention is given to minimal smoothness requirements on the matrix entries and to explicit expressions for matrices in asymptotic expansions.
Keywords: asymptotics of solutions of ordinary differential equations and systems, spectral asymptotics, Birkhoff asymptotics.
Funding agency Grant number
Russian Science Foundation 20-11-20261
This work was financially supported by the Russian Science Foundation, project 20-11-20261, https://rscf.ru/en/project/20-11-20261/.
Received: 15.09.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 6, Pages 1312–1325
DOI: https://doi.org/10.1134/S0001434624110373
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: A. P. Kosarev, A. A. Shkalikov, “Asymptotic expansions of solutions to $n \times n$ systems of ordinary differential equations with a large parameter”, Mat. Zametki, 116:6 (2024), 923–940; Math. Notes, 116:6 (2024), 1312–1325
Citation in format AMSBIB
\Bibitem{KosShk24}
\by A.~P.~Kosarev, A.~A.~Shkalikov
\paper Asymptotic expansions of solutions to $n \times n$ systems of ordinary differential equations with a large parameter
\jour Mat. Zametki
\yr 2024
\vol 116
\issue 6
\pages 923--940
\mathnet{http://mi.mathnet.ru/mzm14508}
\crossref{https://doi.org/10.4213/mzm14508}
\transl
\jour Math. Notes
\yr 2024
\vol 116
\issue 6
\pages 1312--1325
\crossref{https://doi.org/10.1134/S0001434624110373}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85218202095}
Linking options:
  • https://www.mathnet.ru/eng/mzm14508
  • https://doi.org/10.4213/mzm14508
  • https://www.mathnet.ru/eng/mzm/v116/i6/p923
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :8
    Russian version HTML:7
    References:23
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025