Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2024, Volume 116, Issue 4, paper published in the English version journal (Mi mzm14519)  

Papers published in the English version of the journal

Closed-form nonrecurrent formulas for the coefficients of the Taylor series of the weierstrass sigma function

M. M. Alekseev, S. I. Bezrodnykh

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences, Moscow
Abstract: We obtain two closed-form nonrecurrent formulas for the coefficients of the Taylor series of the Weierstrass sigma function related to elliptic function theory. There results are derived from the differential-recurrence and two-dimensional recurrence relations that arise when searching for the analytic solutions of the system of partial differential equations constructed by Weierstrass for the sigma function.
Keywords: elliptic function theory, Weierstrass sigma function, two-dimensional recurrence relations.
Received: 21.09.2024
Revised: 21.09.2024
English version:
Mathematical Notes, 2024, Volume 116, Issue 4, Pages 577–587
DOI: https://doi.org/10.1134/S0001434624090189
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. M. Alekseev, S. I. Bezrodnykh, “Closed-form nonrecurrent formulas for the coefficients of the Taylor series of the weierstrass sigma function”, Math. Notes, 116:4 (2024), 577–587
Citation in format AMSBIB
\Bibitem{AleBez24}
\by M.~M.~Alekseev, S.~I.~Bezrodnykh
\paper Closed-form nonrecurrent formulas for the coefficients of the Taylor series of the weierstrass sigma function
\jour Math. Notes
\yr 2024
\vol 116
\issue 4
\pages 577--587
\mathnet{http://mi.mathnet.ru/mzm14519}
\crossref{https://doi.org/10.1134/S0001434624090189}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85213448691}
Linking options:
  • https://www.mathnet.ru/eng/mzm14519
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:82
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025