Abstract:
In the critical case $\alpha p=n$ functions from the Hardy-Sobolev spaces $H_\alpha^p(B^n)$ have a limit almost everywhere on the boundary along certain regions of exponential contact with the boundary. It is proved in the paper that the maximal operator associated with these regions is bounded as an operator from $H_\alpha^p(B^n)$ to $L^p(\partial B^n)$.
Citation:
V. G. Krotov, “An exact estimate of the boundary behavior of functions from Hardy–Sobolev classes in the critical case”, Mat. Zametki, 62:4 (1997), 527–539; Math. Notes, 62:4 (1997), 439–448
\Bibitem{Kro97}
\by V.~G.~Krotov
\paper An exact estimate of the boundary behavior of functions from Hardy--Sobolev classes in the critical case
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 4
\pages 527--539
\mathnet{http://mi.mathnet.ru/mzm1636}
\crossref{https://doi.org/10.4213/mzm1636}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620146}
\zmath{https://zbmath.org/?q=an:0933.32005}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 4
\pages 439--448
\crossref{https://doi.org/10.1007/BF02358977}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900024}
Linking options:
https://www.mathnet.ru/eng/mzm1636
https://doi.org/10.4213/mzm1636
https://www.mathnet.ru/eng/mzm/v62/i4/p527
This publication is cited in the following 3 articles:
I. N. Katkovskaya, V. G. Krotov, “On Tangential Boundary Behavior of Functions from Hardy Type Spaces”, Lobachevskii J Math, 45:1 (2024), 426
G. A. Karagulyan, I. N. Katkovskaya, V. G. Krotov, “The Fatou Property for General Approximate Identities on Metric Measure Spaces”, Math. Notes, 110:2 (2021), 196–209
V. G. Krotov, L. V. Smovzh, “Weighted estimates for tangential boundary behaviour”, Sb. Math., 197:2 (2006), 193–211