Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2011, Volume 89, Issue 4, Pages 558–576
DOI: https://doi.org/10.4213/mzm6337
(Mi mzm6337)
 

This article is cited in 2 scientific papers (total in 2 papers)

Completeness Theorem for Singular Differential Pencils

D. V. Poplavsky

Saratov State University named after N. G. Chernyshevsky
Full-text PDF (540 kB) Citations (2)
References:
Abstract: A theorem completeness theorem of special vector functions induced by the products of the so-called Weyl solutions of a fourth-order differential equation and by their derivatives on the semiaxis is presented. We prove that such nonlinear combinations of Weyl solutions and their derivatives constitute a linear subspace of decreasing (at infinity) solutions of a linear singular differential system of Kamke type. We construct and study the Green function of the corresponding singular boundary-value problems on the semiaxis for operator pencils defining differential systems of Kamke type. The required completeness theorem is proved by using the analytic and asymptotic properties of the Green function, operator spectral theory methods, and analytic function theory.
Keywords: singular differential pencil, fourth-order differential equation, Weyl solution, Green function, boundary-value problem, operator spectral theory.
Received: 01.09.2008
Revised: 14.06.2010
English version:
Mathematical Notes, 2011, Volume 89, Issue 4, Pages 528–544
DOI: https://doi.org/10.1134/S0001434611030242
Bibliographic databases:
Document Type: Article
UDC: 517.925
Language: Russian
Citation: D. V. Poplavsky, “Completeness Theorem for Singular Differential Pencils”, Mat. Zametki, 89:4 (2011), 558–576; Math. Notes, 89:4 (2011), 528–544
Citation in format AMSBIB
\Bibitem{Pop11}
\by D.~V.~Poplavsky
\paper Completeness Theorem for Singular Differential Pencils
\jour Mat. Zametki
\yr 2011
\vol 89
\issue 4
\pages 558--576
\mathnet{http://mi.mathnet.ru/mzm6337}
\crossref{https://doi.org/10.4213/mzm6337}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2856747}
\transl
\jour Math. Notes
\yr 2011
\vol 89
\issue 4
\pages 528--544
\crossref{https://doi.org/10.1134/S0001434611030242}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290038700024}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955578510}
Linking options:
  • https://www.mathnet.ru/eng/mzm6337
  • https://doi.org/10.4213/mzm6337
  • https://www.mathnet.ru/eng/mzm/v89/i4/p558
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:418
    Full-text PDF :160
    References:46
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025