Abstract:
We establish conditions for the compactness of embeddings for some classes of functions on metric space with measure satisfying the duplication condition. These classes are defined in terms of the Lp-summability of maximal functions measuring local smoothness.
Citation:
I. A. Ivanishko, V. G. Krotov, “Compactness of Embeddings of Sobolev Type on Metric Measure Spaces”, Mat. Zametki, 86:6 (2009), 829–844; Math. Notes, 86:6 (2009), 775–788
This publication is cited in the following 18 articles:
Nathan Wagner, Contemporary Mathematics, 792, Recent Developments in Harmonic Analysis and its Applications, 2024, 101
Mishko Mitkovski, Cody B. Stockdale, Nathan A. Wagner, Brett D. Wick, “Riesz–Kolmogorov Type Compactness Criteria in Function Spaces with Applications”, Complex Anal. Oper. Theory, 17:3 (2023)
N. N. Romanovskii, “Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures”, Moscow University Mathematics Bulletin, 77:1 (2022), 27–40
Nikolay A Torkhov, Leonid I Babak, Vadim A Budnyaev, Katerina V Kareva, Vadim A Novikov, “Conversion of the anomalous skin effect to the normal one in thin-film metallic microwave systems”, Phys. Scr., 97:9 (2022), 095809
N A Torkhov, A V Gradoboev, K N Orlova, A S Toropov, “Physical nature of size effects in TiAlNiAu/GaN ohmic contacts to AlGaN/GaN heteroepitaxial structures”, Semicond. Sci. Technol., 37:5 (2022), 055023
Torkhov N.A., Evstigneev M.P., Kokolov A.A., Babak L.I., “The Fractal Geometry of Tialniau Thin Film Metal System and Its Sheet Resistance (Lateral Size Effect)”, Symmetry-Basel, 13:12 (2021), 2391
Kukushkin M.V., “Note on the Equivalence of Special Norms on the Lebesgue Space”, Axioms, 10:2 (2021), 64
Torkhov N.A., Kokolov A.A., Babak I L., “Influence of the Surface Morphology of the Microwave Microstrip Line on Its Transmission Performance”, Semiconductors, 54:11 (2020), 1472–1477
Torkhov N.A., “Sheet Resistance of the Tialniau Thin-Film Metallization of Ohmic Contacts to Nitride Semiconductor Structures”, Semiconductors, 53:1 (2019), 28–36
Torkhov N.A., Babak L.I., Kokolov A.A., “The Influence of Algan/Gan Heteroepitaxial Structure Fractal Geometry on Size Effects in Microwave Characteristics of Algan/Gan Hemts”, Symmetry-Basel, 11:12 (2019), 1495
N. N. Romanovskiǐ, “Sobolev embedding theorems and generalizations for functions on a metric measure space”, Siberian Math. J., 59:1 (2018), 126–135
Dejun Luo, “The Itô SDEs and Fokker–Planck equations with Osgood and Sobolev coefficients”, Stochastics, 90:3 (2018), 379
Torkhov N.A., Babak L.I., Kokolov A.A., Salnikov A.S., Dobush I.M., Novikov V.A., Ivonin I.V., “Nature of size effects in compact models of field effect transistors”, J. Appl. Phys., 119:9 (2016), 094505
N. N. Romanovskiǐ, “Embedding theorems and a variational problem for functions on a metric measure space”, Siberian Math. J., 55:3 (2014), 511–529
N. N. Romanovskiǐ, “Sobolev spaces on an arbitrary metric measure space: Compactness of embeddings”, Siberian Math. J., 54:2 (2013), 353–367
V. G. Krotov, “Criteria for compactness in Lp-spaces, p⩾0”, Sb. Math., 203:7 (2012), 1045–1064
Veniamin G. Krotov, Springer Proceedings in Mathematics & Statistics, 25, Recent Advances in Harmonic Analysis and Applications, 2012, 197
Krotov V.G., “Quantitative form of the Luzin C-property”, Ukrainian Math. J., 62:3 (2010), 441–451