Nanosystems: Physics, Chemistry, Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Nanosystems: Physics, Chemistry, Mathematics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nanosystems: Physics, Chemistry, Mathematics, 2012, Volume 3, Issue 6, Pages 16–24 (Mi nano713)  

MATHEMATICS

On infinite number of negative eigenvalues of the Friedrichs model

Yu. Kh. Èshkabilov

National University of Uzbekistan named after M. Ulugbek, Tashkent
Abstract: The discrete spectrum of a self-adjoint operator in the framework of the Friedrichs model with a positive symmetrical kernel is studied in this paper. Sufficient conditions for the existence of infinite number of negative eigenvalues in the framework of the Friedrichs model are described.
Keywords: Friedrichs model, spectra, essential spectrum, discrete spectrum.
Bibliographic databases:
Document Type: Article
UDC: 517.984.53
Language: Russian
Citation: Yu. Kh. Èshkabilov, “On infinite number of negative eigenvalues of the Friedrichs model”, Nanosystems: Physics, Chemistry, Mathematics, 3:6 (2012), 16–24
Citation in format AMSBIB
\Bibitem{Esh12}
\by Yu.~Kh.~\`Eshkabilov
\paper On infinite number of negative eigenvalues of the Friedrichs model
\jour Nanosystems: Physics, Chemistry, Mathematics
\yr 2012
\vol 3
\issue 6
\pages 16--24
\mathnet{http://mi.mathnet.ru/nano713}
\elib{https://elibrary.ru/item.asp?id=18278458}
Linking options:
  • https://www.mathnet.ru/eng/nano713
  • https://www.mathnet.ru/eng/nano/v3/i6/p16
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Nanosystems: Physics, Chemistry, Mathematics
    Statistics & downloads:
    Abstract page:90
    Full-text PDF :39
    References:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025