|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Mathematical problems of nonlinearity
Lorenz- and Shilnikov-Shape Attractors
in the Model of Two Coupled Parabola Maps
E. Kuryzhov, E. Karatetskaia, D. Mints National Research University Higher School of Economics,
ul. Bolshaya Pecherskaya 25/12, Nizhny Novgorod, 603155 Russia
Аннотация:
We consider the system of two coupled one-dimensional parabola maps. It is well known
that the parabola map is the simplest map that can exhibit chaotic dynamics, chaos in this map
appears through an infinite cascade of period-doubling bifurcations. For two coupled parabola
maps we focus on studying attractors of two types: those which resemble the well-known discrete
Lorenz-like attractors and those which are similar to the discrete Shilnikov attractors. We describe
and illustrate the scenarios of occurrence of chaotic attractors of both types.
Ключевые слова:
strange attractor, discrete Lorenz attractor, hyperchaos, discrete Shilnikov attractor,
two-dimensional endomorphism.
Поступила в редакцию: 19.04.2021 Принята в печать: 21.05.2021
Образец цитирования:
E. Kuryzhov, E. Karatetskaia, D. Mints, “Lorenz- and Shilnikov-Shape Attractors
in the Model of Two Coupled Parabola Maps”, Rus. J. Nonlin. Dyn., 17:2 (2021), 165–174
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/nd748 https://www.mathnet.ru/rus/nd/v17/i2/p165
|
Статистика просмотров: |
Страница аннотации: | 161 | PDF полного текста: | 88 | Список литературы: | 30 |
|