Russian Journal of Nonlinear Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Rus. J. Nonlin. Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Russian Journal of Nonlinear Dynamics, 2024, том 20, номер 2, страницы 259–276
DOI: https://doi.org/10.20537/nd240203
(Mi nd893)
 

Mathematical problems of nonlinearity

On the Phenomenon of Low-Frequency, Large-Amplitude Oscillations in a High-Dimensional Linear Dynamical System

A. I. Gudimenkoa, A. V. Lihosherstovb

a Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences, ul. Radio 7, Vladivostok, 690041 Russia
b Far Eastern Federal University, Universitetskiy pr., Vladivostok, 690091 Russia
Список литературы:
Аннотация: This article considers a linear dynamic system that models a chain of coupled harmonic oscillators, under special boundary conditions that ensure a balanced energy flow from one end of the chain to the other. The energy conductivity of the chain is controlled by the parameter $\alpha$ of the system.
In a numerical experiment on this system, with a large number of oscillators and at certain values of $\alpha$, the phenomenon of low-frequency high-amplitude oscillations was discovered. The primary analysis showed that this phenomenon has much in common with self-oscillations in nonlinear systems. In both cases, periodic motion is created and maintained by an internal energy source that does not have the corresponding periodicity. In addition, the amplitude of the oscillations significantly exceeds the initial state amplitude. However, this phenomenon also has a fundamental difference from self-oscillations in that it is controlled by the oscillation synchronization mechanism in linear systems and not by the exponential instability suppression mechanism in nonlinear systems.
This article provides an explanation of the observed phenomenon on the basis of a complete analytical solution of the system. The solution is constructed in a standard way by reducing the dynamic problem to the problem of eigenvalues and eigenvectors for the system matrix. When solving, we use methods from the theory of orthogonal polynomials. In addition, we discuss two physical interpretations of the system. The connection between these interpretations and the system is established through the Schrödinger variables.
Ключевые слова: linear dynamical system, harmonic chain, high-amplitude oscillations
Поступила в редакцию: 21.08.2023
Принята в печать: 23.01.2024
Тип публикации: Статья
MSC: 39A21
Язык публикации: английский
Образец цитирования: A. I. Gudimenko, A. V. Lihosherstov, “On the Phenomenon of Low-Frequency, Large-Amplitude Oscillations in a High-Dimensional Linear Dynamical System”, Rus. J. Nonlin. Dyn., 20:2 (2024), 259–276
Цитирование в формате AMSBIB
\RBibitem{GudLik24}
\by A. I. Gudimenko, A. V. Lihosherstov
\paper On the Phenomenon of Low-Frequency, Large-Amplitude Oscillations in a High-Dimensional Linear Dynamical System
\jour Rus. J. Nonlin. Dyn.
\yr 2024
\vol 20
\issue 2
\pages 259--276
\mathnet{http://mi.mathnet.ru/nd893}
\crossref{https://doi.org/10.20537/nd240203}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/nd893
  • https://www.mathnet.ru/rus/nd/v20/i2/p259
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Russian Journal of Nonlinear Dynamics
    Статистика просмотров:
    Страница аннотации:38
    PDF полного текста:21
    Список литературы:17
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025