Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2019, Volume 8(26), Issue 3, Pages 166–186
DOI: https://doi.org/10.15393/j3.art.2019.6410
(Mi pa282)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the convergence of the least square method in case of non-uniform grids

M. S. Sultanakhmedov

Dagestan Scientific Center of RAS, 45, M.Gadzhieva st., Makhachkala, 367025, Russia
Full-text PDF (465 kB) Citations (1)
References:
Abstract: Let $f(t)$ be a continuous on $[-1, 1]$ function, which values are given at the points of arbitrary non-uniform grid $\Omega_N= \{ t_j \}_{j=0}^{N-1}$, where nodes $t_j$ satisfy the only condition $\eta_{j}\!\leq \!t_{j}\!\leq\!\eta_{j+1},$ $0\leq j \leq N-1,$ and nodes $\eta_{j}$ are such that $-1=\eta_{0}<\eta_{1}<\eta_{2}<\cdots<\eta_{N-1}<\eta_{N}=1$. We investigate approximative properties of the finite Fourier series for $f(t)$ by algebraic polynomials $\hat{P}_{n,\,N}(t)$, that are orthogonal on $\Omega_N = \{ t_j \}_{j=0}^{N-1}$. Lebesgue-type inequalities for the partial Fourier sums by $\hat{P}_{n,\,N}(t)$ are obtained.
Keywords: random net, non-uniform grid, orthogonal polynomials, Legendre polynomials, least square method, Fourier series, function approximation.
Received: 03.06.2019
Revised: 22.10.2019
Accepted: 18.10.2019
Bibliographic databases:
Document Type: Article
UDC: 517.521
MSC: 42C10, 41A10, 33F05
Language: English
Citation: M. S. Sultanakhmedov, “On the convergence of the least square method in case of non-uniform grids”, Probl. Anal. Issues Anal., 8(26):3 (2019), 166–186
Citation in format AMSBIB
\Bibitem{Sul19}
\by M.~S.~Sultanakhmedov
\paper On the convergence of the least square method in case of non-uniform grids
\jour Probl. Anal. Issues Anal.
\yr 2019
\vol 8(26)
\issue 3
\pages 166--186
\mathnet{http://mi.mathnet.ru/pa282}
\crossref{https://doi.org/10.15393/j3.art.2019.6410}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000497499600016}
\elib{https://elibrary.ru/item.asp?id=41470790}
Linking options:
  • https://www.mathnet.ru/eng/pa282
  • https://www.mathnet.ru/eng/pa/v26/i3/p166
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:186
    Full-text PDF :23
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024