Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2021, Volume 10(28), Issue 2, Pages 44–53
DOI: https://doi.org/10.15393/j3.art.2021.10110
(Mi pa323)
 

This article is cited in 1 scientific paper (total in 1 paper)

Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$

Ç. Kambak, İ. Çanak

Faculty of Science, Department of Mathematics, Erzene District, Bornova/İzmir 35040, Turkey
References:
Abstract: In this paper, we introduce the summability method $A^{r, p}$ and obtain necessary and sufficient Tauberian conditions under which the ordinary convergence of a sequence follows from its summability $A^{r, p}$. The main results are new Tauberian theorems for the summability method $A^{r, p}$, which are generalizations of the corresponding Tauberian theorems for the summability method $A^r$ introduced by Başar.
Keywords: summability by $A^{r, p}$ method, slow oscillation, slow decrease, Tauberian condition.
Received: 25.03.2021
Revised: 23.04.2021
Accepted: 25.04.2021
Bibliographic databases:
Document Type: Article
UDC: 517.521
MSC: 40E05, 40G05
Language: English
Citation: Ç. Kambak, İ. Çanak, “Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$”, Probl. Anal. Issues Anal., 10(28):2 (2021), 44–53
Citation in format AMSBIB
\Bibitem{KamCan21}
\by {\c C}.~Kambak, {\. I}.~{\c C}anak
\paper Necessary and sufficient Tauberian conditions under which convergence follows from summability $A^{r, p}$
\jour Probl. Anal. Issues Anal.
\yr 2021
\vol 10(28)
\issue 2
\pages 44--53
\mathnet{http://mi.mathnet.ru/pa323}
\crossref{https://doi.org/10.15393/j3.art.2021.10110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000661490100004}
Linking options:
  • https://www.mathnet.ru/eng/pa323
  • https://www.mathnet.ru/eng/pa/v28/i2/p44
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:55
    Full-text PDF :19
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024