Problemy Analiza — Issues of Analysis
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Anal. Issues Anal.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Analiza — Issues of Analysis, 2024, Volume 13(31), Issue 2, Pages 25–48
DOI: https://doi.org/10.15393/j3.art.2024.15111
(Mi pa397)
 

Some embeddings related to homogeneous Triebel–Lizorkin spaces and the $BMO$ functions

B. Gheribi, M. Moussai

Laboratory of Functional Analysis and Geometry of Spaces, Faculty of Mathematics and Computer Science, University of M'sila, PO Box 166 Ichebilia, 28000 M'sila, Algeria
References:
Abstract: As the homogeneous Triebel–Lizorkin space $\dot F^{s}_{p, q}$ and the space $BMO$ are defined modulo polynomials and constants, respectively, we prove that $BMO$ coincides with the realized space of $\dot F^{0}_{\infty, 2}$ and cannot be directly identified with $\dot F^{0}_{\infty, 2}$. In case $p<\infty$, we also prove that the realized space of $\dot F^{n/p}_{p, q}$ is strictly embedded into $BMO$. Then we deduce other results in this paper, that are extensions to homogeneous and inhomogeneous Besov spaces, $\dot B^{s}_{p, q}$ and $B^{s}_{p, q}$, respectively. We show embeddings between $BMO$ and the classical Besov space $ B^{0}_{\infty, \infty}$ in the first case and the realized spaces of $\dot B^{0}_{\infty, 2}$ and $\dot B^{0}_{\infty, \infty}$ in the second one. On the other hand, as an application, we discuss the acting of the Riesz operator $\mathcal{I}_{\beta}$ on $BMO$ space, where we obtain embeddings related to realized versions of $\dot B^{\beta}_{\infty, 2}$ and $\dot B^{\beta}_{\infty, \infty}$.
Keywords: Besov spaces, $BMO$ functions, realizations, Triebel–Lizorkin spaces.
Funding agency Grant number
Ministère de l'Enseignement Supérieur et de la Recherche Scientifique C00L03UN280120220005
Directorate-General for Scientific Research and Technological Development
We thank both the General Direction of Education and Training MESRS (Projet de recherche C00L03UN280120220005), and the General Direction of Scientific Research and Technological Development DGRSDT Algeria.
Received: 03.11.2023
Revised: 28.02.2024
Accepted: 23.03.2024
Document Type: Article
UDC: 517.98
MSC: 30H35, 46E35
Language: English
Citation: B. Gheribi, M. Moussai, “Some embeddings related to homogeneous Triebel–Lizorkin spaces and the $BMO$ functions”, Probl. Anal. Issues Anal., 13(31):2 (2024), 25–48
Citation in format AMSBIB
\Bibitem{GheMou24}
\by B.~Gheribi, M.~Moussai
\paper Some embeddings related to homogeneous Triebel--Lizorkin spaces and the $BMO$ functions
\jour Probl. Anal. Issues Anal.
\yr 2024
\vol 13(31)
\issue 2
\pages 25--48
\mathnet{http://mi.mathnet.ru/pa397}
\crossref{https://doi.org/10.15393/j3.art.2024.15111}
Linking options:
  • https://www.mathnet.ru/eng/pa397
  • https://www.mathnet.ru/eng/pa/v31/i2/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Problemy Analiza — Issues of Analysis
    Statistics & downloads:
    Abstract page:11
    Full-text PDF :5
    References:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024