|
Prikladnaya Diskretnaya Matematika, 2013, Number 3(21), Pages 32–34
(Mi pdm423)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Theoretical Foundations of Applied Discrete Mathematics
On exponents of some varieties of linear algebras
S. M. Ratseev Ulyanovsk State University, Ulyanovsk, Russia
Abstract:
The algebra $UT_s$ of upper triangular matrices of a size $s$ is considered. The equivalent conditions for the growth estimation are obtained for subvarieties in $var(UT_s)$, for varieties of Leibnitz algebras with nilpotent commutant, and for varieties of Leibniz–Poisson algebras with the identities $\{\{x_1,y_1\},\dots,\{x_n,y_n\}\}=0$, $\{x_1,y_1\}\cdot\ldots\cdot\{x_n,y_n\}=0$.
Keywords:
variety of linear algebras, growth of a variety, exponent of a variety.
Citation:
S. M. Ratseev, “On exponents of some varieties of linear algebras”, Prikl. Diskr. Mat., 2013, no. 3(21), 32–34
Linking options:
https://www.mathnet.ru/eng/pdm423 https://www.mathnet.ru/eng/pdm/y2013/i3/p32
|
Statistics & downloads: |
Abstract page: | 155 | Full-text PDF : | 42 | References: | 40 | First page: | 1 |
|