|
Prikladnaya Diskretnaya Matematika, 2014, Number 4(26), Pages 72–77
(Mi pdm481)
|
|
|
|
Applied coding and data compression theory
On the covering radius of the linear codes generated by the affine geometries over $\mathrm{GF}(4)$
M. E. Kovalenko Lomonosov Moscow State University, Moscow, Russia
Abstract:
The covering radius for a code is defined to be a maximal distance between a space vector and the code. It is shown that the covering radius for a linear code generated by the affine geometry over $\mathrm{GF}(4)$ equals 4.
Keywords:
linear codes, finite affine geometries, covering radius.
Citation:
M. E. Kovalenko, “On the covering radius of the linear codes generated by the affine geometries over $\mathrm{GF}(4)$”, Prikl. Diskr. Mat., 2014, no. 4(26), 72–77
Linking options:
https://www.mathnet.ru/eng/pdm481 https://www.mathnet.ru/eng/pdm/y2014/i4/p72
|
Statistics & downloads: |
Abstract page: | 192 | Full-text PDF : | 67 | References: | 24 |
|