Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2014, Number 4(26), Pages 72–77 (Mi pdm481)  

Applied coding and data compression theory

On the covering radius of the linear codes generated by the affine geometries over $\mathrm{GF}(4)$

M. E. Kovalenko

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: The covering radius for a code is defined to be a maximal distance between a space vector and the code. It is shown that the covering radius for a linear code generated by the affine geometry over $\mathrm{GF}(4)$ equals 4.
Keywords: linear codes, finite affine geometries, covering radius.
Document Type: Article
UDC: 519.72
Language: Russian
Citation: M. E. Kovalenko, “On the covering radius of the linear codes generated by the affine geometries over $\mathrm{GF}(4)$”, Prikl. Diskr. Mat., 2014, no. 4(26), 72–77
Citation in format AMSBIB
\Bibitem{Kov14}
\by M.~E.~Kovalenko
\paper On the covering radius of the linear codes generated by the affine geometries over~$\mathrm{GF}(4)$
\jour Prikl. Diskr. Mat.
\yr 2014
\issue 4(26)
\pages 72--77
\mathnet{http://mi.mathnet.ru/pdm481}
Linking options:
  • https://www.mathnet.ru/eng/pdm481
  • https://www.mathnet.ru/eng/pdm/y2014/i4/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :67
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024