Prikladnaya Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika, 2022, Number 55, Pages 95–101
DOI: https://doi.org/10.17223/20710410/55/7
(Mi pdm763)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical Backgrounds of Informatics and Programming

Generic complexity of the membership problem for semigroups of integer matrices

A. N. Rybalov

Sobolev Institute of Mathematics, Novosibirsk, Russia
Full-text PDF (678 kB) Citations (2)
References:
Abstract: The membership problem for finitely generated subgroups (subsemigroups) of groups (semigroups) is a classical algorithmic problem, actively studied for many decades. Already for sufficiently simple groups and semigroups, this problem becomes undecidable. For example, K. A. Mikhailova in 1966 proved the undecidability of the membership problem for finitely generated subgroups (hence and for subsemigroups) of a direct product $F_2 \times F_2$ of two free groups of rank $2$. Since, by the well-known Sanov theorem, the group $F_2$ has an exact representation by integer matrices of order $2$, the group $F_2 \times F_2$ is a subgroup of the group $\text{GL}_4 (\mathbb{Z})$ of integer matrices of order $4$. It easily implies the undecidability of this problem for the group $\text{GL}_{k} (\mathbb{Z})$ for $k \geq 4$. Undecidability of the membership problem for finitely generated subsemigroups of semigroups of integer matrices of order $\geq 3$ follows from Paterson's result proved in 1970. In this paper, we propose a strongly generic algorithm deciding the membership problem for semigroups of integer matrices of arbitrary order for inputs from a subset whose sequence of frequencies exponentially fast converges to $1$ with increasing size.
Keywords: generic complexity, membership problem, semigroups of integer matrices.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FWNF-2022-0003
Bibliographic databases:
Document Type: Article
UDC: 510.52
Language: Russian
Citation: A. N. Rybalov, “Generic complexity of the membership problem for semigroups of integer matrices”, Prikl. Diskr. Mat., 2022, no. 55, 95–101
Citation in format AMSBIB
\Bibitem{Ryb22}
\by A.~N.~Rybalov
\paper Generic complexity of~the~membership problem for~semigroups of integer matrices
\jour Prikl. Diskr. Mat.
\yr 2022
\issue 55
\pages 95--101
\mathnet{http://mi.mathnet.ru/pdm763}
\crossref{https://doi.org/10.17223/20710410/55/7}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4381271}
Linking options:
  • https://www.mathnet.ru/eng/pdm763
  • https://www.mathnet.ru/eng/pdm/y2022/i1/p95
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная дискретная математика
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :42
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024