Prikladnaya Diskretnaya Matematika. Supplement
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Prikl. Diskr. Mat. Suppl.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Prikladnaya Diskretnaya Matematika. Supplement, 2018, Issue 11, Pages 133–136
DOI: https://doi.org/10.17223/2226308X/11/41
(Mi pdma408)
 

Mathematical Foundations of Informatics and Programming

On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields

A. N. Rybalov

Omsk State University, Omsk
References:
Abstract: Generic-case approach to algorithmic problems was introduced by Miasnikov, Kapovich, Schupp and Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. In this paper, we consider generic complexity of the discrete logarithm problem in elliptic curves over finite fields $\mathrm{GF}(p)$ with prime $p$. We fit this problem in the frameworks of generic complexity and prove that its natural subproblem is generically hard provided that the discrete logarithm problem is hard in the worst case.
Keywords: generic complexity, discrete logarithm problem, elliptic curves.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-550001
Bibliographic databases:
Document Type: Article
UDC: 510.52
Language: Russian
Citation: A. N. Rybalov, “On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields”, Prikl. Diskr. Mat. Suppl., 2018, no. 11, 133–136
Citation in format AMSBIB
\Bibitem{Ryb18}
\by A.~N.~Rybalov
\paper On the generic complexity of discrete logarithm problem in groups of elliptic curves over finite fields
\jour Prikl. Diskr. Mat. Suppl.
\yr 2018
\issue 11
\pages 133--136
\mathnet{http://mi.mathnet.ru/pdma408}
\crossref{https://doi.org/10.17223/2226308X/11/41}
\elib{https://elibrary.ru/item.asp?id=35557625}
Linking options:
  • https://www.mathnet.ru/eng/pdma408
  • https://www.mathnet.ru/eng/pdma/y2018/i11/p133
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Prikladnaya Diskretnaya Matematika. Supplement
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :58
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024