Прикладная математика & Физика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ПМ&Ф:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Прикладная математика & Физика, 2019, том 51, выпуск 1, страницы 21–32
DOI: https://doi.org/10.18413/2075-4639-2019-51-1-21-32
(Mi pmf3)
 

МАТЕМАТИКА

Пространственно неоднородные решения в двух краевых задачах для уравнения Кана-Хиллиарда

А. Н. Куликов, Д. А. Куликов

Ярославский государственный университет имени П.Г. Демидова
Аннотация: Рассматривается известное в математической физике уравнение Кана-Хиллиарда, имеющее приложения в химической кинетике и физике пограничных явлений. Данное нелинейное дифференциальное уравнение изучается вместе с однородными краевыми условиями Дирихле и Неймана. Для обеих краевых задач дан анализ локальных бифуркаций в окрестности однородных состояний равновесия. Для краевой задачи Дирихле получены условия, при выполнении которых в окрестности нулевого состояния равновесия реализуется бифуркация типа «вилка». Более сложный характер бифуркаций реализуется в краевой задаче Неймана. В работе показано, что при превышении порогового значения управляющего параметра из однородных состояний равновесия бифурцируют однопараметрические семейства пространственно неоднородных состояний равновесия. Для обоснования результатов использованы методы теории динамических систем с бесконечномерным пространством начальных условий: метод интегральных (инерциальных) многообразий, аппарат теории нормальных форм Пуанкаре, асимптотические методы анализа. Их использование позволяет получать асимптотические формулы для найденных решений, а также изучать вопрос об их устойчивости в смысле определения А.М. Ляпунова в метрике фазового пространства решений.
Ключевые слова: уравнение Кана-Хиллиарда, краевые задачи, динамические системы, устойчивость, бифуркации, асимптотика.
Финансовая поддержка
Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-01-00672.
Тип публикации: Статья
УДК: 517.926: 537.934
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/pmf3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная математика & Физика
    Статистика просмотров:
    Страница аннотации:26
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025