Прикладная математика & Физика
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Правила для авторов

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



ПМ&Ф:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Прикладная математика & Физика, 2023, том 55, выпуск 3, страница 207
DOI: https://doi.org/10.52575/2687-0959-2023-55-3-207-219
(Mi pmf383)
 

МАТЕМАТИКА

О стратификации и топологической структуре классических компактных групп Ли

В. Н. Берестовскийa, Ю. Г. Никоноровb

a Институт математики им. С. Л. Соболева СО РАН
b Южный математический институт Владикавказского научного центра РАН
Аннотация: В статье осуществлена стратификация классических связных компактных групп Ли. Стратом наибольшей размерности каждой такой группы Ли является диффеоморфный образ ее алгебры Ли относительно преобразования Кэли, состоящий в точности из матриц, допускающих (обратное) преобразование Кэли. Дальнейшая стратификация производится на подмножестве исключительных матриц группы Ли, т.е. подмножестве всех матриц, не допускающих преобразования Кэли. Основное внимание уделяется группам Ли унитарных матриц. Как следствие, получено описание топологической структуры множеств исключительных унитарных операторов в двумерных и трехмерных комплексных векторных пространствах; первое из них реализовано физиками как конформная бесконечность пространства Минковского. Стратификация унитарных групп использует указанные в статье фундаментальные области действия их групп Вейля на максимальных торах и однородные пространства с геометрическими структурами - орбиты канонических унитарных матриц относительно действия унитарных групп сопряжениями.
Ключевые слова: гомотопическая группа, группа гомологий, исключительная матрица, неисключительная матрица, преобразование Кэли, страт, стратификация.
Поступила в редакцию: 30.09.2023
Принята в печать: 30.09.2023
Тип публикации: Статья
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/pmf383
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Прикладная математика & Физика
    Статистика просмотров:
    Страница аннотации:24
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024