Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2008, Volume 44, Issue 2, Pages 3–22 (Mi ppi1267)  

This article is cited in 32 scientific papers (total in 32 papers)

Information Theory

On Approximation of Infinite-Dimensional Quantum Channels

M. E. Shirokov, A. S. Holevo

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We develop an approximation approach to infinite-dimensional quantum channels based on a detailed investigation of continuity properties of entropic characteristics of quantum channels and operations (trace-nonincreasing completely positive maps) as functions of a pair “channel, input state.” Obtained results are then applied to the problems of continuity of the $\chi$-capacity as a function of a channel, strong additivity of the $\chi$-capacity for infinite-dimensional channels, and approximating representation for the convex closure of the output entropy of an arbitrary quantum channel.
Received: 11.12.2007
English version:
Problems of Information Transmission, 2008, Volume 44, Issue 2, Pages 73–90
DOI: https://doi.org/10.1134/S0032946008020014
Bibliographic databases:
Document Type: Article
UDC: 621.391.1
Language: Russian
Citation: M. E. Shirokov, A. S. Holevo, “On Approximation of Infinite-Dimensional Quantum Channels”, Probl. Peredachi Inf., 44:2 (2008), 3–22; Problems Inform. Transmission, 44:2 (2008), 73–90
Citation in format AMSBIB
\Bibitem{ShiHol08}
\by M.~E.~Shirokov, A.~S.~Holevo
\paper On Approximation of Infinite-Dimensional Quantum Channels
\jour Probl. Peredachi Inf.
\yr 2008
\vol 44
\issue 2
\pages 3--22
\mathnet{http://mi.mathnet.ru/ppi1267}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2435236}
\elib{https://elibrary.ru/item.asp?id=13566762}
\transl
\jour Problems Inform. Transmission
\yr 2008
\vol 44
\issue 2
\pages 73--90
\crossref{https://doi.org/10.1134/S0032946008020014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257584100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-48249089685}
Linking options:
  • https://www.mathnet.ru/eng/ppi1267
  • https://www.mathnet.ru/eng/ppi/v44/i2/p3
  • This publication is cited in the following 32 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:632
    Full-text PDF :111
    References:64
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024