Problemy Peredachi Informatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Probl. Peredachi Inf.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Problemy Peredachi Informatsii, 2018, Volume 54, Issue 4, Pages 82–109 (Mi ppi2282)  

This article is cited in 14 scientific papers (total in 14 papers)

Large Systems

Exponentially Ramsey sets

A. A. Sagdeev

Laboratory of Advanced Combinatorics and Network Applications, Moscow Institute of Physics and Technology (State University), Moscow, Russia
References:
Abstract: We study chromatic numbers of spaces $\mathbb{R}^n_p=(\mathbb{R}^n, \ell_p)$ with forbidden monochromatic sets. For some sets, we for the first time obtain explicit exponentially growing lower bounds for the corresponding chromatic numbers; for some others, we substantially improve previously known bounds.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00355_а
Ministry of Education and Science of the Russian Federation НШ-6760.2018.1
Supported in part by the Russian Foundation for Basic Research, project no. 18-01-00355, and the President of the Russian Federation Council for State Support of Leading Scientific Schools, grant no. NSh-6760.2018.1.
Received: 08.12.2017
Revised: 17.06.2018
Accepted: 13.11.2018
English version:
Problems of Information Transmission, 2018, Volume 54, Issue 4, Pages 372–396
DOI: https://doi.org/10.1134/S0032946018040051
Bibliographic databases:
Document Type: Article
UDC: 621.391.1:519.1
Language: Russian
Citation: A. A. Sagdeev, “Exponentially Ramsey sets”, Probl. Peredachi Inf., 54:4 (2018), 82–109; Problems Inform. Transmission, 54:4 (2018), 372–396
Citation in format AMSBIB
\Bibitem{Sag18}
\by A.~A.~Sagdeev
\paper Exponentially Ramsey sets
\jour Probl. Peredachi Inf.
\yr 2018
\vol 54
\issue 4
\pages 82--109
\mathnet{http://mi.mathnet.ru/ppi2282}
\elib{https://elibrary.ru/item.asp?id=38647181}
\transl
\jour Problems Inform. Transmission
\yr 2018
\vol 54
\issue 4
\pages 372--396
\crossref{https://doi.org/10.1134/S0032946018040051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000456991400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060761577}
Linking options:
  • https://www.mathnet.ru/eng/ppi2282
  • https://www.mathnet.ru/eng/ppi/v54/i4/p82
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Проблемы передачи информации Problems of Information Transmission
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :24
    References:25
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024