Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2020, том 25, выпуск 6, страницы 509–521
DOI: https://doi.org/10.1134/S1560354720060015
(Mi rcd1080)
 

Эта публикация цитируется в 7 научных статьях (всего в 7 статьях)

Confinement Strategies in a Simple SIR Model

Gilberto Nakamuraab, Basil Grammaticosab, Mathilde Badoualab

a Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
b Université de Paris, IJCLab, 91405 Orsay, France
Список литературы:
Аннотация: We propose a simple deterministic, differential equation-based, SIR model in order to investigate the impact of various confinement strategies on a most virulent epidemic. Our approach is motivated by the current COVID-19 pandemic. The main hypothesis is the existence of two populations of susceptible persons, one which obeys confinement and for which the infection rate does not exceed 1, and a population which, being non confined for various imperatives, can be substantially more infective. The model, initially formulated as a differential system, is discretised following a specific procedure, the discrete system serving as an integrator for the differential one. Our model is calibrated so as to correspond to what is observed in the COVID-19 epidemic, for the period from February 19 to April 16.
Several conclusions can be reached, despite the very simple structure of our model. First, it is not possible to pinpoint the genesis of the epidemic by just analysing data from when the epidemic is in full swing. It may well turn out that the epidemic has reached a sizeable part of the world months before it became noticeable. Concerning the confinement scenarios, a universal feature of all our simulations is that relaxing the lockdown constraints leads to a rekindling of the epidemic. Thus, we sought the conditions for the second epidemic peak to be lower than the first one. This is possible in all the scenarios considered (abrupt or gradualexit, the latter having linear and stepwise profiles), but typically a gradual exit can start earlier than an abrupt one. However, by the time the gradual exit is complete, the overall confinement times are not too different. From our results, the most promising strategy is that of a stepwise exit. Its implementation could be quite feasible, with the major part of the population (perhaps, minus the fragile groups) exiting simultaneously, but obeying rigorous distancing constraints.
Ключевые слова: epidemics, modelling, SIR model, lockdown.
Поступила в редакцию: 17.04.2020
Принята в печать: 09.09.2020
Реферативные базы данных:
Тип публикации: Статья
Язык публикации: английский
Образец цитирования: Gilberto Nakamura, Basil Grammaticos, Mathilde Badoual, “Confinement Strategies in a Simple SIR Model”, Regul. Chaotic Dyn., 25:6 (2020), 509–521
Цитирование в формате AMSBIB
\RBibitem{NakGraBad20}
\by Gilberto Nakamura, Basil Grammaticos, Mathilde Badoual
\paper Confinement Strategies in a Simple SIR Model
\jour Regul. Chaotic Dyn.
\yr 2020
\vol 25
\issue 6
\pages 509--521
\mathnet{http://mi.mathnet.ru/rcd1080}
\crossref{https://doi.org/10.1134/S1560354720060015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4184410}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000596572500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097234035}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1080
  • https://www.mathnet.ru/rus/rcd/v25/i6/p509
  • Эта публикация цитируется в следующих 7 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:127
    Список литературы:27
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025