|
Special Issue: In Honor of Vladimir Belykh and Sergey Gonchenko Guest Editors: Alexey Kazakov, Vladimir Nekorkin, and Dmitry Turaev
On Homeomorphisms of Three-Dimensional Manifolds with Pseudo-Anosov Attractors and Repellers
Vyacheslav Z. Grines, Olga V. Pochinka, Ekaterina E. Chilina International Laboratory of Dynamical Systems and Applications, HSE University,
ul. Bolshaya Pecherckaya 25/12, 603155 Nizhny Novgorod, Russia
Аннотация:
The present paper is devoted to a study of orientation-preserving homeomorphisms
on three-dimensional manifolds with a non-wandering set consisting of a finite number of surface
attractors and repellers. The main results of the paper relate to a class of homeomorphisms
for which the restriction of the map to a connected component of the non-wandering set
is topologically conjugate to an orientation-preserving pseudo-Anosov homeomorphism. The
ambient $\Omega$-conjugacy of a homeomorphism from the class with a locally direct product of a
pseudo-Anosov homeomorphism and a rough transformation of the circle is proved. In addition,
we prove that the centralizer of a pseudo-Anosov homeomorphisms consists of only pseudo-
Anosov and periodic maps.
Ключевые слова:
pseudo-Anosov homeomorphism, two-dimensional attractor
Поступила в редакцию: 17.09.2023 Принята в печать: 10.01.2024
Образец цитирования:
Vyacheslav Z. Grines, Olga V. Pochinka, Ekaterina E. Chilina
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1251
|
Статистика просмотров: |
Страница аннотации: | 40 | Список литературы: | 17 |
|