|
Эта публикация цитируется в 3 научных статьях (всего в 3 статьях)
$C^1$-Smooth $\Omega$-Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I: $\Omega$-Stability
Lyudmila S. Efremovaab a Moscow Institute of Physics and Technology,
Institutsky per. 9, 141701 Dolgoprudny, Russia
b Nizhny Novgorod State University,
pr. Gagarina 23, 603022 Nizhny Novgorod, Russia
Аннотация:
We prove here the criterion of $C^1$- $\Omega$-stability of self-maps of a 3D-torus, which
are skew products of circle maps. The $C^1$- $\Omega$-stability property is studied with respect to homeomorphisms of skew products type. We give here an example of the $\Omega$-stable map on a 3D-torus and investigate approximating properties of maps under consideration.
Ключевые слова:
skew product of circle maps, quotient map, fiber maps, $C^1$-stability of a family of fiber
maps as a whole, $C^1$- $\Omega$-stable skew product
Поступила в редакцию: 24.12.2023 Принята в печать: 28.03.2024
Образец цитирования:
Lyudmila S. Efremova, “$C^1$-Smooth $\Omega$-Stable Skew Products and Completely Geometrically Integrable Self-Maps of 3D-Tori, I: $\Omega$-Stability”, Regul. Chaotic Dyn., 29:3 (2024), 491–514
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1265 https://www.mathnet.ru/rus/rcd/v29/i3/p491
|
| Статистика просмотров: |
| Страница аннотации: | 116 | | Список литературы: | 37 |
|