Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2025, том 30, выпуск 1, страницы 103–119
DOI: https://doi.org/10.1134/S1560354725010058
(Mi rcd1299)
 

Local and Nonlocal Cycles in a System with Delayed Feedback Having Compact Support

Alexandra A. Kashchenko, Sergey A. Kashchenko

Regional Scientific and Educational Mathematics Center “Center of Integrable Systems”, P. G. Demidov Yaroslavl State University, ul. Sovetskaya 14, 150003 Yaroslavl, Russia
Список литературы:
Аннотация: The purpose of this work is to study small oscillations and oscillations with an asymptotically large amplitude in nonlinear systems of two equations with delay, regularly depending on a small parameter. We assume that the nonlinearity is compactly supported, i. e., its action is carried out only in a certain finite region of phase space. Local oscillations are studied by classical methods of bifurcation theory, and the study of nonlocal dynamics is based on a special large-parameter method, which makes it possible to reduce the original problem to the analysis of a specially constructed finite-dimensional mapping. In all cases, algorithms for constructing the asymptotic behavior of solutions are developed. In the case of local analysis, normal forms are constructed that determine the dynamics of the original system in a neighborhood of the zero equilibrium state, the asymptotic behavior of the periodic solution is constructed, and the question of its stability is answered. In studying nonlocal solutions, one-dimensional mappings are constructed that make it possible to determine the behavior of solutions with an asymptotically large amplitude. Conditions for the existence of a periodic solution are found and its stability is investigated.
Ключевые слова: asymptotics, delay, periodic solutions, compactly supported nonlinearity
Финансовая поддержка Номер гранта
Российский научный фонд 21-71-30011
This study was supported by a grant from the Russian Science Foundation No 21-71-30011, https://rscf.ru/project/21-71-30011/.
Поступила в редакцию: 16.10.2024
Принята в печать: 09.12.2024
Тип публикации: Статья
MSC: 34K13, 34K25
Язык публикации: английский
Образец цитирования: Alexandra A. Kashchenko, Sergey A. Kashchenko, “Local and Nonlocal Cycles in a System with Delayed Feedback Having Compact Support”, Regul. Chaotic Dyn., 30:1 (2025), 103–119
Цитирование в формате AMSBIB
\RBibitem{KasKas25}
\by Alexandra A. Kashchenko, Sergey A. Kashchenko
\paper Local and Nonlocal Cycles in a System with Delayed Feedback Having Compact Support
\jour Regul. Chaotic Dyn.
\yr 2025
\vol 30
\issue 1
\pages 103--119
\mathnet{http://mi.mathnet.ru/rcd1299}
\crossref{https://doi.org/10.1134/S1560354725010058}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd1299
  • https://www.mathnet.ru/rus/rcd/v30/i1/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:30
    Список литературы:2
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025