|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Chain-Recurrent $C^0$- $\Omega$-Blowup in $C^1$-Smooth Simplest Skew Products on Multidimensional Cells
Lyudmila S. Efremovaab, Dmitry A. Novozhilovb a Moscow Institute of Physics and Technology,
Institutsky per. 9, 141701 Dolgoprudny, Russia
b Nizhny Novgorod State University,
pr. Gagarina 23, 603022 Nizhny Novgorod, Russia
Аннотация:
In this paper we prove criteria of a $C^0$- $\Omega$-blowup in $C^1$-smooth skew products with a
closed set of periodic points on multidimensional cells and give examples of maps that admit such a $\Omega$-blowup.
Our method is based on the study of the properties of the set of chain-recurrent points. We also
prove that the set of weakly nonwandering points of maps under consideration coincides with
the chain-recurrent set, investigate the approximation (in the $C^0$-norm) and entropy properties
of $C^1$-smooth skew products with a closed set of periodic points.
Ключевые слова:
skew product of interval maps, quotient map, fiber maps, chain-recurrent point, weakly non-wandering point, $\Omega$-blowup, topological entropy
Поступила в редакцию: 14.10.2024 Принята в печать: 28.12.2024
Образец цитирования:
Lyudmila S. Efremova, Dmitry A. Novozhilov, “Chain-Recurrent $C^0$- $\Omega$-Blowup in $C^1$-Smooth Simplest Skew Products on Multidimensional Cells”, Regul. Chaotic Dyn., 30:1 (2025), 120–140
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd1300 https://www.mathnet.ru/rus/rcd/v30/i1/p120
|
| Статистика просмотров: |
| Страница аннотации: | 80 | | Список литературы: | 38 |
|