Regular and Chaotic Dynamics
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Общая информация
Последний выпуск
Архив
Импакт-фактор

Поиск публикаций
Поиск ссылок

RSS
Последний выпуск
Текущие выпуски
Архивные выпуски
Что такое RSS



Regul. Chaotic Dyn.:
Год:
Том:
Выпуск:
Страница:
Найти






Персональный вход:
Логин:
Пароль:
Запомнить пароль
Войти
Забыли пароль?
Регистрация


Regular and Chaotic Dynamics, 2017, том 22, выпуск 6, страницы 677–687
DOI: https://doi.org/10.1134/S1560354717060065
(Mi rcd282)
 

Эта публикация цитируется в 2 научных статьях (всего в 2 статьях)

Are Nonsymmetric Balanced Configurations of Four Equal Masses Virtual or Real?

Alain Chencinerab

a IMCCE, Paris Observatory, 77, avenue Denfert-Rochereau, 75014 Paris
b Department of Mathematics, University Paris Diderot, 8, place Aurélie Nemours, 75013 Paris
Список литературы:
Аннотация: Balanced configurations of $N$ point masses are the configurations which, in a Euclidean space of high enough dimension, i.e., up to $2(N-1)$, admit a relative equilibrium motion under the Newtonian (or similar) attraction. Central configurations are balanced and it has been proved by Alain Albouy that central configurations of four equal masses necessarily possess a symmetry axis, from which followed a proof that the number of such configurations up to similarity is finite and explicitly describable. It is known that balanced configurations of three equal masses are exactly the isosceles triangles, but it is not known whether balanced configurations of four equal masses must have some symmetry. As balanced configurations come in families, it makes sense to look for possible branches of nonsymmetric balanced configurations bifurcating from the subset of symmetric ones. In the simpler case of a logarithmic potential, the subset of symmetric balanced configurations of four equal masses is easy to describe as well as the bifurcation locus, but there is a grain of salt: expressed in terms of the squared mutual distances, this locus lies almost completely outside the set of true configurations (i. e., generalizations of triangular inequalities are not satisfied) and hence could lead most of the time only to the bifurcation of a branch of virtual nonsymmetric balanced configurations. Nevertheless, a tiny piece of the bifurcation locus lies within the subset of real balanced configurations symmetric with respect to a line and hence has a chance to lead to the bifurcation of real nonsymmetric balanced configurations. This raises the question of the title, a question which, thanks to the explicit description given here, should be solvable by computer experts even in the Newtonian case. Another interesting question is about the possibility for a bifurcating branch of virtual nonsymmetric balanced configurations to come back to the domain of true configurations.
Ключевые слова: balanced configuration, symmetry.
Поступила в редакцию: 10.09.2017
Принята в печать: 10.10.2017
Реферативные базы данных:
Тип публикации: Статья
MSC: 70F10
Язык публикации: английский
Образец цитирования: Alain Chenciner, “Are Nonsymmetric Balanced Configurations of Four Equal Masses Virtual or Real?”, Regul. Chaotic Dyn., 22:6 (2017), 677–687
Цитирование в формате AMSBIB
\RBibitem{Che17}
\by Alain Chenciner
\paper Are Nonsymmetric Balanced Configurations of Four Equal Masses Virtual or Real?
\jour Regul. Chaotic Dyn.
\yr 2017
\vol 22
\issue 6
\pages 677--687
\mathnet{http://mi.mathnet.ru/rcd282}
\crossref{https://doi.org/10.1134/S1560354717060065}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3736467}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000417697500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85037659611}
Образцы ссылок на эту страницу:
  • https://www.mathnet.ru/rus/rcd282
  • https://www.mathnet.ru/rus/rcd/v22/i6/p677
  • Эта публикация цитируется в следующих 2 статьяx:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Статистика просмотров:
    Страница аннотации:202
    Список литературы:56
     
      Обратная связь:
     Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025