|
Эта публикация цитируется в 1 научной статье (всего в 1 статье)
Precession of the Kovalevskaya and Goryachev – Chaplygin Tops
Ivan Yu. Polekhin Steklov Mathematical Institute, Russian Academy of Sciences,
ul. Gubkina 8, Moscow, 119991 Russia
Аннотация:
The change of the precession angle is studied analytically and numerically for two classical integrable tops: the Kovalevskaya top and the Goryachev – Chaplygin top. Based on the known results on the topology of Liouville foliations for these systems, we find initial conditions for which the average change of the precession angle is zero or can be estimated asymptotically. Some more difficult cases are studied numerically. In particular, we show that the average change of the precession angle for the Kovalevskaya top can be non-zero even in the case of zero area integral.
Ключевые слова:
mean motion, Kovalevskaya top, Goryachev – Chaplygin top, integrable system, precession.
Поступила в редакцию: 18.03.2019 Принята в печать: 30.04.2019
Образец цитирования:
Ivan Yu. Polekhin, “Precession of the Kovalevskaya and Goryachev – Chaplygin Tops”, Regul. Chaotic Dyn., 24:3 (2019), 281–297
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd478 https://www.mathnet.ru/rus/rcd/v24/i3/p281
|
Статистика просмотров: |
Страница аннотации: | 227 | Список литературы: | 56 |
|