|
Эта публикация цитируется в 13 научных статьях (всего в 13 статьях)
Thermodynamic Formalism and Selberg's Zeta Function for Modular Groups
C.-H. Chang, D. Mayer Theoretische Physik, Technische Universität Clausthal,
Arnold-Sommerfeld-Str. 6 38678 Clausthal-Zellerfeld, Germany
Аннотация:
In the framework of the thermodynamic formalism for dynamical systems [26] Selberg's zeta function [29] for the modular group $PSL(2,\mathbb{Z})$ can be expressed through the Fredholm determinant of the generalized Ruelle transfer operator for the dynamical system defined by the geodesic flow on the modular surface corresponding to the group $PSL(2,\mathbb{Z})$ [19]. In the present paper we generalize this result to modular subgroups $\Gamma$ with finite index of $PSL(2,\mathbb{Z})$. The corresponding surfaces of constant negative curvature with finite hyperbolic volume are in general ramified covering surfaces of the modular surface for $PSL(2,\mathbb{Z})$. Selberg's zeta function for these modular subgroups can be expressed via the generalized transfer operators for $PSL(2,\mathbb{Z})$ belonging to the representation of $PSL(2,\mathbb{Z})$ induced by the trivial representation of the subgroup $\Gamma$. The decomposition of this induced representation into its irreducible components leads to a decomposition of the transfer operator for these modular groups in analogy to a well known factorization formula of Venkov and Zograf for Selberg's zeta function for modular subgroups [34].
Поступила в редакцию: 09.11.1999
Образец цитирования:
C.-H. Chang, D. Mayer, “Thermodynamic Formalism and Selberg's Zeta Function for Modular Groups”, Regul. Chaotic Dyn., 5:3 (2000), 281–312
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/rcd881 https://www.mathnet.ru/rus/rcd/v5/i3/p281
|
Статистика просмотров: |
Страница аннотации: | 213 |
|