Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2022, Volume 77, Issue 3, Pages 549–551
DOI: https://doi.org/10.1070/RM10055
(Mi rm10055)
 

This article is cited in 1 scientific paper (total in 1 paper)

Brief Communications

Infinite sets can be Ramsey in the Chebyshev metric

A. B. Kupavskiiab, A. A. Sagdeeva, N. Franklc

a Moscow Institute for Physics and Technology (National Research University)
b CNRS, Grenoble, France
c Alfréd Rényi Institute of Mathematics, Budapest, Hungary
References:
Funding agency Grant number
Russian Science Foundation 22-21-00368
Contest «Young Russian Mathematics»
The second author was supported by the Russian Science Foundation (grant no. 22-21-00368). The second author was also a winner of the Young Russian Mathematics Contest, and he would like to thank the sponsors and jury of the contest.
Received: 04.04.2022
Russian version:
Uspekhi Matematicheskikh Nauk, 2022, Volume 77, Issue 3(465), Pages 175–176
DOI: https://doi.org/10.4213/rm10055
Bibliographic databases:
Document Type: Article
MSC: 05D10
Language: English
Original paper language: Russian

Ramsey theory, which originated from a group of unrelated (at first glance) results from different areas of mathematics (Ramsey’s theorem, which appeared due to the intrinsic development of mathematical logic, the number-theoretic Schur theorem, the geometric ‘happy ending problem’), evolved into a separate discipline in the second half of the 20th century (see the classical book [1]). The present study is concerned with geometric Ramsey problems, which encompass the well-known currently open problem of the chromatic number of the plane (see the survey [2]) and can be traced back to the classical studies in [3] and [4] by Erdős with coauthors.

Let us give the formal definitions. Let $\mathbb{X}=(X,\rho_X)$, $\mathcal{Y}=(Y,\rho_Y)$ be metric spaces. A subset $Y' $ of $ X$ is called a copy of $\mathcal{Y}$ if there exists a bijection $f\colon Y \to Y'$ that preserves distances. The chromatic number $\chi(\mathbb{X},\mathcal{Y})$ of $\mathbb{X}$ with forbidden space $\mathcal{Y}$ is by definition the smallest $k$ such that the elements of $X$ can be coloured with $k$ colours so that no monochromatic copy $Y' \subset X$ of $\mathcal{Y}$ arises. The Euclidean Ramsey theory treats the case where $\mathbb{X}$ is an $n$-dimensional Euclidean space $\mathbb{R}_2^n$. At present, there is no answer (nor even a generally accepted conjecture) in the problem of the classification of the finite Ramsey spaces (that is, spaces $\mathcal{Y}$ such that $\chi(\mathbb{R}_2^n,\mathcal{Y})\to \infty$ as $n \to \infty$), even though this problem has been drawing the attention of many prominent mathematicians for several decades (see [5]–[11]). However, the situation turns out to be much simpler if the forbidden space $\mathcal{Y}$ is infinite: in [4] it was shown that in this case the exact equality $\chi(\mathbb{R}_2^n,\mathcal{Y})=2$ holds. The conjecture that this equality holds not only for infinite, but also for all sufficiently large spaces $\mathcal{Y}$ (in terms of the dimension $n$) is still open (see [12]).

Recently [13], [14] the authors of the present paper have extended problems in the Euclidean Ramsey theory to the metric spaces $\mathbb{R}_\infty^n=(\mathbb{R}^n,\ell_\infty)$, where $\ell_\infty$ is the standard Chebyshev metric defined by $\ell_\infty(\mathbf{x},\mathbf{y})=\max_{i}|x_i-y_i|$ for all $\mathbf{x}=(x_1,\dots,x_n)$ and $\mathbf{y}=(y_1,\dots,y_n)$ in $\mathbb{R}^n$. It particular, they showed that for any finite metric space $\mathcal{Y}$ there exists a constant $c=c(\mathcal Y)>1$ such that $\chi(\mathbb{R}_\infty^n,\mathcal Y)>c^n$ for any $n\in \mathbb N$. However, the situation with infinite forbidden spaces $\mathcal{Y}$ remained unclear. Our paper fills this gap.

The subsets $\mathcal{B}(\boldsymbol{\lambda})= \{0,\lambda_1,\lambda_1+\lambda_2,\dots\}$ of the real line, where $\boldsymbol{\lambda}=(\lambda_1,\lambda_2,\dots)$ is an arbitrary decreasing sequence of positive numbers, provide an example of most natural resolvable infinite metric spaces. It can be assumed without loss of generality that the series $\sum_i\lambda_i$ is convergent, because a simple $2$-colouring of the space by nested colour-alternating cubes with sufficiently rapidly growing side lengths shows that $\chi(\mathbb{R}_\infty^n,\mathcal Y)=2$ for all $\mathcal{Y}$ such that $\operatorname{diam}(\mathcal{Y})=\infty$.

Theorem 1. For any natural number $n$,

(a) if $\lim_{i} \lambda_i/\lambda_{i+1} \leqslant 1+5^{-n}$, then $\chi(\mathbb{R}_\infty^n,\mathcal{B}(\boldsymbol{\lambda}))=2$;

(b) if $\lambda_i \geqslant 32\lambda_{i+1}$ for all $i \in \mathbb{N}$, then $\chi(\mathbb{R}_\infty^n,\mathcal{B}(\boldsymbol{\lambda})) \geqslant \log_3 n$;

(c) if $\lambda_i \geqslant 2^{n}\lambda_{i+1}$ for all $i \in \mathbb{N}$, then $\chi(\mathbb{R}_\infty^n,\mathcal{B}(\boldsymbol{\lambda})) \geqslant n+1$;

(d) if $|Y|\geqslant n^n$, then $\chi(\mathbb{R}_\infty^n,\mathcal Y) \leqslant n+1$.

We note two corollaries of this result, which illustrate the fundamental difference between the Euclidean and Chebyshev Ramsey theories.

First, the estimate $\chi(\mathbb{R}_\infty^n,\mathcal Y) \leqslant n+1$ is the best upper estimate for $\chi(\mathbb{R}_\infty^n,\mathcal Y)$ that holds for all infinite metric spaces $\mathcal{Y}$. In particular, this estimate depends on the dimension $n$. Moreover, by contrast to the Euclidean case, one can prove its attainability not only for infinite spaces, but also for all sufficiently large spaces $\mathcal{Y}$.

Second, assertion (b) of Theorem 1 guarantees the existence of an infinite Ramsey space (in the Chebyshev metric), that is, a set $\mathcal{Y}$ such that $\chi(\mathbb{R}_\infty^n,\mathcal Y) \to \infty$ as $n \to \infty$. In fact, it suffices to put $\mathcal{Y}=\mathcal{B}(\boldsymbol{\lambda})$, where $\boldsymbol{\lambda}$ is an infinite decreasing geometric progression with ratio $1/32$ (or with any smaller ratio). Here the growth rate of $\chi(\mathbb{R}_\infty^n,\mathcal Y)$ is at least logarithmic.

This result leaves open the following questions. How the quantity $\chi(\mathbb{R}_\infty^n,\mathcal{B}(\boldsymbol{\lambda}))$ behaves with respect to the dimension, where $\boldsymbol{\lambda}$ is an infinite decreasing geometric progression with ratio $1/32 < q < 1$? Does there exist an infinite metric space $\mathcal{Y}$ such that $\chi(\mathbb{R}_\infty^n,\mathcal Y)=n+1$ for all natural numbers $n$?


Bibliography

1. R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, Wiley-Intersci. Ser. Discrete Math. Optim., 2nd ed., John Wiley & Sons, Inc., New York, 1990, xii+196 pp.  mathscinet  zmath
2. A. M. Raigorodskii, Thirty essays on geometric graph theory, Springer, New York, 2013, 429–460  crossref  mathscinet  zmath
3. P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, J. Combin. Theory Ser. A, 14:3 (1973), 341–363  crossref  mathscinet  zmath
4. P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, and E. G. Straus, Infinite and finite sets (Keszthely 1973), Colloq. Math. Soc. János Bolyai, 10, North-Holland, Amsterdam, 1975, 529–557, 559–583  mathscinet  mathscinet  zmath
5. I. Leader, P. A. Russell, and M. Walters, J. Combin. Theory Ser. A., 119:2 (2012), 382–396  crossref  mathscinet  zmath
6. P. Frankl and V. Rödl, J. Amer. Math. Soc., 3:1 (1990), 1–7  crossref  mathscinet  zmath
7. I. Kříž, Proc. Amer. Math. Soc., 112:3 (1991), 899–907  crossref  mathscinet  zmath
8. R. I. Prosanov, Mat. Zametki, 103:2 (2018), 248–257  mathnet  crossref  mathscinet  zmath; English transl. in Math. Notes, 103:2 (2018), 243–250  crossref
9. A. A. Sagdeev, Problemy Peredach Informatsii, 54:4 (2018), 82–109  mathnet  mathscinet  zmath; English transl. in Problems Inform. Transmission, 54:4 (2018), 372–396  crossref
10. A. A. Sagdeev, Problemy Peredachi Infornatsii, 55:4 (2019), 86–106  mathnet  mathscinet  zmath; English transl. in Problems Inform. Transmission, 55:4 (2019), 376–395  crossref
11. E. Naslund, Bull. Lond. Math. Soc., 52:4 (2020), 687–692  crossref  mathscinet  zmath
12. D. Conlon and J. Fox, Discrete Comput. Geom., 61:1 (2019), 218–225  crossref  mathscinet  zmath
13. A. B. Kupavskii and A. A. Sagdeev, Uspekhi Mat. Nauk, 75:5(455) (2020), 191–192  mathnet  crossref  mathscinet  zmath; English transl. in Russian Math. Surveys, 75:5 (2020), 965–967  crossref  adsnasa
14. A. Kupavskii and A. Sagdeev, Forum Math. Sigma, 9 (2021), e55, 12 pp.  crossref  mathscinet  zmath

Citation: A. B. Kupavskii, A. A. Sagdeev, N. Frankl, “Infinite sets can be Ramsey in the Chebyshev metric”, Uspekhi Mat. Nauk, 77:3(465) (2022), 175–176; Russian Math. Surveys, 77:3 (2022), 549–551
Citation in format AMSBIB
\Bibitem{KupSagFra22}
\by A.~B.~Kupavskii, A.~A.~Sagdeev, N.~Frankl
\paper Infinite sets can be Ramsey in the Chebyshev metric
\jour Uspekhi Mat. Nauk
\yr 2022
\vol 77
\issue 3(465)
\pages 175--176
\mathnet{http://mi.mathnet.ru/rm10055}
\crossref{https://doi.org/10.4213/rm10055}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4602197}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022RuMaS..77..549K}
\transl
\jour Russian Math. Surveys
\yr 2022
\vol 77
\issue 3
\pages 549--551
\crossref{https://doi.org/10.1070/RM10055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000992284200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85148985800}
Linking options:
  • https://www.mathnet.ru/eng/rm10055
  • https://doi.org/10.1070/RM10055
  • https://www.mathnet.ru/eng/rm/v77/i3/p175
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:261
    Russian version PDF:21
    English version PDF:32
    Russian version HTML:85
    English version HTML:104
    References:44
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024