Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2024, Volume 79, Issue 1, Pages 173–175
DOI: https://doi.org/10.4213/rm10154e
(Mi rm10154)
 

Brief communications

Curvature and isometries of the Lorentzian Lobachevsky plane

Yu. L. Sachkovab

a Ailamazyan Program Systems Institute of Russian Academy of Sciences
b RUDN University
References:
Funding agency Grant number
Russian Science Foundation 22-11-00140
The research in § 3 was performed in Ailamazyan Program Systems Institute of Russian Academy of Sciences and supported by the Russian Science Foundation under grant no. 22-11-00140, https://rscf.ru/en/project/22-11-00140/.
Received: 25.09.2023
Bibliographic databases:
Document Type: Article
MSC: 53C50
Language: English
Original paper language: Russian

Lorentzian geometry is the mathematical foundation of relativity theory [1], [2]. It is different from Riemannian geometry is that information can propagate along curves with velocity vectors lying in a certain acute cone. A natural problem consists in finding Lorentzian length maximizers, which maximize a length-type functional along admissible curves. Thus, it is important to describe length maximizers and the properties of the corresponding Lorentzian distance function, including the curvature and isometries of the space.

In this note we investigate left-invariant Lorentzian structures on the unique connected and simply connected non-Abelian two-dimensional Lie group. In our previous paper [3] we presented a description of Lorentzian maximizers for these structures, of the distances, and of spheres. In this note we show that these structures have a constant curvature, so that they are locally isometric to model constant curvature spaces (the Minkowski space ${\mathbb R}_1^{2}$, the de Sitter space ${\mathbb S}^2_1$, or the anti-de Sitter space $\widetilde{{\mathbb H}^2_1}$). In the case of curvature zero we provide an explicit isometric embedding in the two-dimensional Minkowski space. We also consider isometries of these Lorentz structures, both infinitesimal and global ones.

1. The statement of the problem

Let $G=\operatorname{Aff}_+({\mathbb R})= \{(x,y) \in {\mathbb R}^2 \mid y > 0\}$ be the group of proper affine functions on the line, which is the Lobachevsky plane in its Poincaré model on the upper half-plane. Let $\mathfrak{g}$ denote the Lie algebra of left-invariant vector fields on the Lie group $G$. Consider the left-invariant frame $X_1=y\,\partial/\partial x$, $X_2=y\,\partial/\partial y$ in $\mathfrak{g}$. A left-invariant Lorentzian structure on $G$ is a non-degenerate quadratic form $g$ of index $(1,1)$ on $\mathfrak{g}$ [1], [2], [4], [5]. The set of such structures is parametrized by the matrices

$$ \begin{equation*} A=\begin{pmatrix} a&b \\ c&d \end{pmatrix},\qquad |A| > 0, \end{equation*} \notag $$
such that $g(u)=-(au_1+bu_2)^2+(cu_1+du_2)^2$. Let $\alpha$, $\beta$, $\gamma$, and $\delta$ denote the entries of the inverse matrix
$$ \begin{equation*} A^{-1}=\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}. \end{equation*} \notag $$

2. Curvature

Theorem 1. The Levi-Civita connection $D$ of a left-invariant Lorentzian structure $g$ on the group $G=\operatorname{Aff}_+({\mathbb R})$ can be defined by

$$ \begin{equation*} D_{X_i}X_j=\mu_{ij}X_1+\nu_{ij}X_2, \qquad i,j=1,2, \end{equation*} \notag $$
where
$$ \begin{equation*} \begin{gathered} \, (\mu_{11},\nu_{11})=-|A|^{-2}(-g_{12}g_{11},g_{11}^2),\qquad (\mu_{12},\nu_{12})=-|A|^{-2}(-g_{22}g_{11},g_{12}g_{11}), \\ (\mu_{21},\nu_{21})=-|A|^{-2}(-g_{12}^2,g_{11}g_{12}),\qquad (\mu_{22},\nu_{22})=-|A|^{-2}(-g_{22}g_{12},g_{12}^2), \\ g_{11}=g(X_1)=c^2-a^2, \quad g_{12}=g(X_1,X_2)=cd-ab, \quad g_{22}=g(X_2)=d^2-b^2. \end{gathered} \end{equation*} \notag $$

Theorem 2. A left-invariant Lorentzian structure $g$ on $G=\operatorname{Aff}_+({\mathbb R})$ has constant sectional curvature $K=g(X_1)/|A|^2$.

Corollary 1. A left-invariant Lorentzian structure $g$ on $G=\operatorname{Aff}_+({\mathbb R})$ is locally isometric to the Minkowski space ${\mathbb R}^2_1$ (for $K=0$), the de Sitter space ${\mathbb S}^2_1$ (for $K>0$), or the anti-de Sitter space $\widetilde{{\mathbb H}^2_1}$ (for $K<0$).

3. Isometries

We calculate the Lie algebra $i(G)$ of Killing vector fields (infinitesimal symmetries) for left-invariant Lorentzian structures on $G=\operatorname{Aff}_+({\mathbb R})$. By Theorem 2 such Lorentzian structures have a constant curvature, so $\dim i(G)=3$. Left shifts on $G$ are clearly isometries. They are generated by right-invariant vector fields on $G$: $\widetilde{X}_1(q)=R_{q*}X_1(\operatorname{Id})=\partial/\partial x$ and $\widetilde{X}_2(q)=R_{q*}X_2(\operatorname{Id})=x\,\partial/\partial x+ y\,\partial/\partial y$, where $R_q\colon\overline{q}\mapsto\overline{q}q$ is a right shift on $G$. Therefore, $\widetilde{X}_1$ and $\widetilde{X}_2$ are Killing vector fields. To describe the three-dimensional Lie algebra $i(G)$ it remains to find just one Killing vector field which is linearly independent of $\widetilde{X}_1$ and $\widetilde{X}_2$.

Theorem 3. Let $K \ne 0$. Then $i(G)=\operatorname{span}(\widetilde{X}_1,\widetilde{X}_2,X_{\pm})$, where $\pm=\operatorname{sgn} K$ and $X_{\pm}=(y^2+w^2)\,\partial/\partial w+2wy\,\partial/\partial y$ for $w=(x \pm \nu(y-1))/\lambda$, $\lambda=(\alpha\delta-\beta\gamma)/\Delta$, $\nu=(\beta\delta-\alpha\gamma)/\Delta$, and $\Delta=\pm\gamma^2\mp\delta^2$. The commutator table for this Lie algebra is as follows:

$$ \begin{equation*} \begin{gathered} \, [\widetilde{X}_1,\widetilde{X}_2]=\widetilde{X}_1, \qquad [\widetilde{X}_1,X_{\pm}]=\mp\frac{2\nu}{\lambda}\widetilde{X}_1+ \frac{2}{\lambda}\widetilde{X}_2, \\ [\widetilde{X}_2,X_{\pm}]=\frac{2(\lambda^2-\nu^2)}{\lambda} \widetilde{X}_1\pm \frac{2\nu}{\lambda}\widetilde{X}_2+X_{\pm}. \end{gathered} \end{equation*} \notag $$
The Lie algebra $i(G)$ is isomorphic to the Lie algebra $\mathfrak{sl}(2)$ of the group $\operatorname{SL}(2)$ of unimodular matrices of order $2$.

Theorem 4. Let $K=0$. Then $i(G)=\operatorname{span}(\widetilde{X}_1,\widetilde{X}_2,X_0)$, where $X_0=w\,\partial/\partial w+y(1-y)\,\partial/\partial y$ for $w=(x+g(y-1))/f$, $f=-(\alpha-s_1\beta)/(2\gamma)$, $g=-(\alpha+s_1 \beta)/(2\gamma)$, and $s_1=\operatorname{sgn}\gamma$. The commutator table for this Lie algebra is as follows:

$$ \begin{equation*} [\widetilde{X}_1,\widetilde{X}_2]=\widetilde{X}_1, \qquad [\widetilde{X}_1,X_0]=\widetilde{X}_1, \qquad [\widetilde{X}_2,X_0]=2g\widetilde{X}_1-\widetilde{X}_2+X_0. \end{equation*} \notag $$
The Lie algbera $i(G)$ is isomorphic to the Lie algebra $\mathfrak{sh}(2)$ of the hyperbolic motion group $\operatorname{SH}(2)$ of the plane.

Theorem 5. The Lie algebra of complete Killing fields is two-dimensional; it is generated by the vector fields $\widetilde{X}_1$ and $\widetilde{X}_2$. The identity component of the Lie group of isometries of the Lorentz group $\operatorname{Aff}_+({\mathbb R})$ is two dimensional and consists of the left shifts on this group.

Theorem 6. Let $K=0$. Then the map $i\colon\operatorname{Aff}_+({\mathbb R})\to \Pi \subset {\mathbb R}^2_1$, where $\Pi=\bigl\{(\widetilde{x},\widetilde{y}) \in {\mathbb R}^2_1 \mid s_1 \widetilde{y}+\widetilde{x} < 1/\gamma \bigr\}$ and $i(x,y)=(\widetilde{x},\widetilde{y})=\bigl(\bigl((y-1)/y-w/\gamma\bigr)/2, s_1\bigl((y-1)/y+w/\gamma\bigr)/2\bigr)$, is an isometry.

The author of grateful to L. V. Lokutsievskiy, D. V. Alekseevsky, N. I. Zhukova, and E. Le Donne for useful discussions of the questions under consideration.


Bibliography

1. R. M. Wald, General relativity, Univ. Chicago Press, Chicago, IL, 1984, xiii+491 pp.  crossref  mathscinet  zmath
2. J. K. Beem, P. E. Ehrlich, and K. L. Easley, Global Lorentzian geometry, Monogr. Textbooks Pure Appl. Math., 202, 2nd ed., Marcel Dekker, Inc., New York, 1996, xiv+635 pp.  mathscinet  zmath
3. Yu. L. Sachkov, Math. Notes, 114:1 (2023), 127–130  mathnet  crossref  mathscinet  zmath
4. J. A. Wolf, Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011, xviii+424 pp.  mathscinet  zmath
5. B. O'Neill, Semi-Riemannian geometry. With applications to relativity, Pure Appl. Math., 103, Academic Press, Inc., New York, 1983, xiii+468 pp.  mathscinet  zmath

Citation: Yu. L. Sachkov, “Curvature and isometries of the Lorentzian Lobachevsky plane”, Russian Math. Surveys, 79:1 (2024), 173–175
Citation in format AMSBIB
\Bibitem{Sac24}
\by Yu.~L.~Sachkov
\paper Curvature and isometries of the Lorentzian Lobachevsky plane
\jour Russian Math. Surveys
\yr 2024
\vol 79
\issue 1
\pages 173--175
\mathnet{http://mi.mathnet.ru//eng/rm10154}
\crossref{https://doi.org/10.4213/rm10154e}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4774056}
\zmath{https://zbmath.org/?q=an:07891394}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2024RuMaS..79..173S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001292806100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85205987049}
Linking options:
  • https://www.mathnet.ru/eng/rm10154
  • https://doi.org/10.4213/rm10154e
  • https://www.mathnet.ru/eng/rm/v79/i1/p185
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:241
    Russian version PDF:9
    English version PDF:22
    Russian version HTML:23
    English version HTML:84
    References:25
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024